IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9306-d1167028.html
   My bibliography  Save this article

Potential of an Area in Terms of Pro-Climate Solutions in a Land Consolidation Project

Author

Listed:
  • Katarzyna Kocur-Bera

    (Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jacek Rapiński

    (Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Monika Siejka

    (Department of Land Surveying, University of Agriculture in Krakow, 31-120 Krakow, Poland)

  • Przemysław Leń

    (Faculty of Geodesy and Geotechnics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Anna Małek

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznań, Poland)

Abstract

Land consolidation plays an important role in promoting changes in agricultural land use and ensuring national food security. Moreover, it allows the land structure in rural areas to be built anew. By changing the spatial structure of the countryside, it is also possible to implement water and drainage measures as well as ecological and landscape measures aimed at improving farming conditions. At the same time, they have an impact on the climate. This study analysed the potential for the implementation of pro-climate solutions that can be applied when implementing a land consolidation project in terms of reducing wind speed, increasing humidity, and affecting carbon dioxide reduction. The analyses used an indicator of the potential for implementing pro-climate solutions based on an overall synthetic index taking into account 11 attributes. The results show that the micro-location potential in the context of the possibility of applying pro-climate solutions is not homogenous. It is affected, e.g., by the soil quality, the state of farming culture of the land in agricultural use, the resource and advancement of natural landscape components, and the local needs of agricultural producers to introduce environmental solutions that will simultaneously have a positive impact on farming conditions. According to research, peri-tree land can cluster, meaning that its character represents a spatial continuity. During the land consolidation process, this continuity should be preserved, especially in areas with inferior soil quality.

Suggested Citation

  • Katarzyna Kocur-Bera & Jacek Rapiński & Monika Siejka & Przemysław Leń & Anna Małek, 2023. "Potential of an Area in Terms of Pro-Climate Solutions in a Land Consolidation Project," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9306-:d:1167028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiuqin Zhang & Tianzhu Zhang, 2018. "Land Consolidation Design Based on an Evaluation of Ecological Sensitivity," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    2. Guo, Beibei & Fang, Yelin & Jin, Xiaobin & zhou, Yinkang, 2020. "Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China," Land Use Policy, Elsevier, vol. 95(C).
    3. Liu, Jing & Jin, Xiaobin & Xu, Weiyi & Sun, Rui & Han, Bo & Yang, Xuhong & Gu, Zhengming & Xu, Cuilan & Sui, Xueyan & Zhou, Yinkang, 2019. "Influential factors and classification of cultivated land fragmentation, and implications for future land consolidation: A case study of Jiangsu Province in eastern China," Land Use Policy, Elsevier, vol. 88(C).
    4. Qu, Yanbo & Jiang, Guang-hui & Li, Zitong & Tian, Yaya & Wei, Shuwen, 2019. "Understanding rural land use transition and regional consolidation implications in China," Land Use Policy, Elsevier, vol. 82(C), pages 742-753.
    5. Yishao Shi & Xiangyang Cao & Dongmei Fu & Yuncai Wang, 2018. "Comprehensive Value Discovery of Land Consolidation Projects: An Empirical Analysis of Shanghai, China," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    6. Yury G. Chendev & Thomas J. Sauer & Guillermo Hernandez Ramirez & Charles Lee Burras, 2015. "History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe," Sustainability, MDPI, vol. 7(1), pages 1-20, January.
    7. Abolfazl Mollalo & Liang Mao & Parisa Rashidi & Gregory E. Glass, 2019. "A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States," IJERPH, MDPI, vol. 16(1), pages 1-17, January.
    8. Zhou, Yang & Li, Yamei & Xu, Chenchen, 2020. "Land consolidation and rural revitalization in China: Mechanisms and paths," Land Use Policy, Elsevier, vol. 91(C).
    9. Shamdasani, Yogita, 2021. "Rural road infrastructure & agricultural production: Evidence from India," Journal of Development Economics, Elsevier, vol. 152(C).
    10. Siyan Zeng & Fengwu Zhu & Fu Chen & Man Yu & Shaoliang Zhang & Yongjun Yang, 2018. "Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    11. Wójcik-Leń, Justyna & Sobolewska-Mikulska, Katarzyna & Sajnóg, Natalia & Leń, Przemysław, 2018. "The idea of rational management of problematic agricultural areas in the course of land consolidation," Land Use Policy, Elsevier, vol. 78(C), pages 36-45.
    12. Stańczuk-Gałwiaczek, Małgorzata & Sobolewska-Mikulska, Katarzyna & Ritzema, Henk & van Loon-Steensma, Jantsje M., 2018. "Integration of water management and land consolidation in rural areas to adapt to climate change: Experiences from Poland and the Netherlands," Land Use Policy, Elsevier, vol. 77(C), pages 498-511.
    13. Sheikh Ahmad Zaki & Hai Jian Toh & Fitri Yakub & Ahmad Shakir Mohd Saudi & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki, 2020. "Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    14. Xiao-Ni Huo & Hong Li & Dan-Feng Sun & Lian-Di Zhou & Bao-Guo Li, 2012. "Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China," IJERPH, MDPI, vol. 9(3), pages 1-23, March.
    15. Rattanachot, Wit & Wang, Yuhong & Chong, Dan & Suwansawas, Suchatvee, 2015. "Adaptation strategies of transport infrastructures to global climate change," Transport Policy, Elsevier, vol. 41(C), pages 159-166.
    16. Alessandro Bonadonna & Andrea Rostagno & Riccardo Beltramo, 2020. "Improving the Landscape and Tourism in Marginal Areas: The Case of Land Consolidation Associations in the North-West of Italy," Land, MDPI, vol. 9(6), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Sun & Xiaojun Song & Jing Ma & Haochen Yu & Xiaoping Ge & Gang-Jun Liu & Fu Chen, 2021. "Assessing the Effectiveness for Achieving Policy Objectives of Land Consolidation in China: Evidence from Project Practices in Jiangsu Province from 2001 to 2017," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    2. Wang, Ge & Li, Xiaoqiu & Gao, Yingjie & Zeng, Chen & Wang, Bingkun & Li, Xiangyu & Li, Xintong, 2023. "How does land consolidation drive rural industrial development? Qualitative and quantitative analysis of 32 land consolidation cases in China," Land Use Policy, Elsevier, vol. 130(C).
    3. Xin Xu & Qianru Chen & Zhenhong Zhu, 2022. "Evolutionary Overview of Land Consolidation Based on Bibliometric Analysis in Web of Science from 2000 to 2020," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
    4. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    5. Yin, Qiqi & Sui, Xueyan & Ye, Bei & Zhou, Yujie & Li, Chengqiang & Zou, Mengmeng & Zhou, Shenglu, 2022. "What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis," Land Use Policy, Elsevier, vol. 120(C).
    6. Zhou, Jian & Cao, Xiaoshu, 2020. "What is the policy improvement of China’s land consolidation? Evidence from completed land consolidation projects in Shaanxi Province," Land Use Policy, Elsevier, vol. 99(C).
    7. Li, Hanbing & Jin, Xiaobin & McCormick, Barbara Prack & Tittonell, Pablo & Liu, Jing & Han, Bo & Sun, Rui & Zhou, Yinkang, 2023. "Analysis of the contribution of land consolidation to sustainable poverty alleviation under various natural conditions," Land Use Policy, Elsevier, vol. 133(C).
    8. Álvarez, Inmaculada C. & Orea, Luis & Perez-Mendez, Jose A., 2019. "Rural and agricultural development by land consolidation: a spatial production analysis of Asturias´ parishes," Efficiency Series Papers 2019/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Yaoben Lin & Danling Chen, 2022. "Functional Zoning and Path Selection of Land Comprehensive Consolidation Based on Grey Constellation Clustering: A Case Study of Dongying City, China," IJERPH, MDPI, vol. 19(11), pages 1-16, May.
    10. Jiang, Yanfeng & Tang, Yu-Ting & Long, Hualou & Deng, Wu, 2022. "Land consolidation: A comparative research between Europe and China," Land Use Policy, Elsevier, vol. 112(C).
    11. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    12. Minjuan Lv & Zhiting Chen & Lingling Yao & Xiaohu Dang & Peng Li & Xiaoshu Cao, 2022. "Potential Zoning of Construction Land Consolidation in the Loess Plateau Based on the Evolution of Human–Land Relationship," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    13. Justyna Wójcik-Leń & Przemysław Leń, 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas," Land, MDPI, vol. 10(7), pages 1-13, June.
    14. Tan, Kun & Zhao, Xiaoqing & Pu, Junwei & Li, Sinan & Li, Yuhao & Miao, Peipei & Wang, Qian, 2021. "Zoning regulation and development model for water and land resources in the Karst Mountainous Region of Southwest China," Land Use Policy, Elsevier, vol. 109(C).
    15. Shuchang Li & Wei Song, 2023. "Research Progress in Land Consolidation and Rural Revitalization: Current Status, Characteristics, Regional Differences, and Evolution Laws," Land, MDPI, vol. 12(1), pages 1-24, January.
    16. Grzegorz Oleniacz, 2021. "Czekanowski’s Diagram and Spatial Data Cluster Analysis for Planning Sustainable Development of Rural Areas," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    17. Yanyuan Zhang & Cong Xu & Min Xia, 2021. "Can Land Consolidation Reduce the Soil Erosion of Agricultural Land in Hilly Areas? Evidence from Lishui District, Nanjing City," Land, MDPI, vol. 10(5), pages 1-14, May.
    18. Asimeh, Mahboubeh & Nooripoor, Mehdi & Azadi, Hossein & Van Eetvelde, Veerle & Sklenička, Petr & Witlox, Frank, 2020. "Agricultural land use sustainability in Southwest Iran: Improving land leveling using consolidation plans," Land Use Policy, Elsevier, vol. 94(C).
    19. Yuanzhi Guo & Jieyong Wang, 2023. "Land Consolidation in Rural China: Historical Stages, Typical Modes, and Improvement Paths," Land, MDPI, vol. 12(2), pages 1-15, February.
    20. Xinhai Lu & Bin Jiang & Mingqing Liu & Yuying Li & Danling Chen, 2022. "A Study on the Gains and Losses of the Ecosystem Service Value of the Land Consolidation Projects of Different Properties in Hubei Province: An Empirical Comparison Based on Plains, Mountains and Hill," Land, MDPI, vol. 11(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9306-:d:1167028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.