IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15604-d1273783.html
   My bibliography  Save this article

Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment

Author

Listed:
  • Juan Bucay-Valdiviezo

    (Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador)

  • Pedro Escudero-Villa

    (Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador)

  • Jenny Paredes-Fierro

    (Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador)

  • Manuel Ayala-Chauvin

    (Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador)

Abstract

Predictive maintenance management plays a crucial role in ensuring the reliable operation of equipment in industry. While continuous monitoring technology is available today, equipment without sensors limits continuous equipment state data recording. Predictive maintenance has been effectively carried out using artificial intelligence algorithms for datasets with sufficient data. However, replicating these results with limited data is challenging. This work proposes the use of time series models to implement predictive maintenance in the equipment of an automotive assembly company with few records available. For this purpose, three models are explored—Holt–Winters Exponential Smoothing (HWES), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average (SARIMA)—to determine the most accurate forecasting of future equipment downtime and advocate the use of SAP PM for effective maintenance process management. The data were obtained from five equipment families from January 2020 to December 2022, representing 36 registers for each piece of equipment. After data fitting and forecasting, the results indicate that the SARIMA model best fits seasonal characteristics, and the forecasting offers valuable information to help in decision-making to avoid equipment downtime, despite having the highest error. The results were less favorable when handling datasets with random components, requiring model recalibration for short-term forecasting.

Suggested Citation

  • Juan Bucay-Valdiviezo & Pedro Escudero-Villa & Jenny Paredes-Fierro & Manuel Ayala-Chauvin, 2023. "Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment," Sustainability, MDPI, vol. 15(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15604-:d:1273783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Zhang, Huixian & Wei, Xiukun & Liu, Zhiqiang & Ding, Yaning & Guan, Qingluan, 2025. "Condition-based maintenance for multi-state systems with prognostic and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    3. Diyang, Liu & Shibin, Gao & Xiaoguang, Wei & Jiaming, Luo & Jian, Shi, 2024. "Impactability and susceptibility assessment based on D-S evidence theory for analyzing the risk of fault propagation among catenary components," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    10. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Lu, Biao & Wang, Xin & Cui, Weiwei & Ye, Zhisheng, 2025. "A predictive opportunistic maintenance policy for a serial–parallel multi-station manufacturing system with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    12. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. Renata Tavanielli & Márcio Laurini, 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    14. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Shi, Yan & Lu, Zhenzhou & Huang, Hongzhong & Liu, Yu & Li, Yanfeng & Zio, Enrico & Zhou, Yicheng, 2022. "A new preventive maintenance strategy optimization model considering lifecycle safety," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Zhang, Wei-Heng & Qin, Jianjun & Lu, Da-Gang & Liu, Min & Faber, Michael H., 2023. "Quantification of the value of condition monitoring system with time-varying monitoring performance in the context of risk-based inspection," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    20. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15604-:d:1273783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.