IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13720-d1239835.html
   My bibliography  Save this article

Spatiotemporal Patterns and Driving Factors of Non-Grain Cultivated Land in China’s Three Main Functional Grain Areas

Author

Listed:
  • Suxia Zhao

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454001, China)

  • Dongyang Xiao

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454001, China)

  • Mengmeng Yin

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454001, China)

Abstract

Food security, fundamental to national security, is challenged by the non-grain conversion of cultivated land. Based on the social and economic statistical data in China, this paper explores the spatiotemporal patterns and driving factors of non-grain cultivated land nationwide and in China’s three main functional grain areas during 2000–2020 with the help of the GIS Spatial Analysis and Spatial Metrology Model. The results show, first, that non-grain conversion initially increased but later decreased, with the non-grain level increasing from 30.61% in 2000 to 34.78% in 2003 and then decreasing to 30.28% in 2020; vegetables, fruits, and medicinal herbs were the main non-grain crops in most areas. Second, the non-grain levels showed an obvious spatial agglomeration state; the regions with low non-grain levels were located in the main grain-producing areas, and although the non-grain conversion levels in the main grain-producing areas decreased, the non-grain levels in these areas were clearly lower in the north than in the south. Moreover, the non-grain conversion levels in the main grain-sales areas and the grain production and sales balance areas increased. Third, rural population size, per capita GDP, the proportion of primary industry, and the land transfer rate are important drivers of the non-grain conversion of cultivated land nationally, but there are also significant spatial differences in the influence of these driving factors in different functional grain areas. This paper provides a new research perspective for analyzing the influencing mechanisms of cultivated non-grain land from the three functional grain areas. At the same time, it reveals the roots of the government’s predicament in the governance of non-grain cultivated land. It provides a reference for the government to formulate new policies for managing non-grain cultivated land.

Suggested Citation

  • Suxia Zhao & Dongyang Xiao & Mengmeng Yin, 2023. "Spatiotemporal Patterns and Driving Factors of Non-Grain Cultivated Land in China’s Three Main Functional Grain Areas," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13720-:d:1239835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiu, Tongwei & Boris Choy, S.T. & Li, Shangpu & He, Qinying & Luo, Biliang, 2020. "Does land renting-in reduce grain production? Evidence from rural China," Land Use Policy, Elsevier, vol. 90(C).
    2. Xiaofeng Zhao & Yuqian Zheng & Xianjin Huang & Mei-Po Kwan & Yuntai Zhao, 2017. "The Effect of Urbanization and Farmland Transfer on the Spatial Patterns of Non-Grain Farmland in China," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    3. Su, Yue & Qian, Kui & Lin, Lin & Wang, Ke & Guan, Tao & Gan, Muye, 2020. "Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection," Land Use Policy, Elsevier, vol. 92(C).
    4. Jizhou Zhang & Xiaojing Li & Shouhong Xie & Xianli Xia, 2022. "Research on the Influence Mechanism of Land Tenure Security on Farmers’ Cultivated Land Non-Grain Behavior," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liye Wang & Jiwei Xu & Yaolin Liu & Siyu Zhang, 2023. "Spatial Characteristics of the Non-Grain Production Rate of Cropland and Its Driving Factors in Major Grain-Producing Area: Evidence from Shandong Province, China," Land, MDPI, vol. 13(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan Ran & Zhanlu Zhang & Yuhan Jing, 2022. "A Study on the Spatial–Temporal Evolution and Driving Factors of Non-Grain Production in China’s Major Grain-Producing Provinces," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    2. Zuo Zhang & Lin Zheng & Dajie Yu, 2023. "Non-Grain Production of Cultivated Land in Hilly and Mountainous Areas at the Village Scale: A Case Study in Le’an Country, China," Land, MDPI, vol. 12(8), pages 1-17, August.
    3. Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).
    4. Jundong Hu & Hong Wang & Yu Song, 2023. "Spatio-Temporal Evolution and Driving Factors of “Non-Grain Production” in Hubei Province Based on a Non-Grain Index," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    5. Yuanyuan Chen & Mu Li & Zemin Zhang, 2023. "Does the Rural Land Transfer Promote the Non-Grain Production of Cultivated Land in China?," Land, MDPI, vol. 12(3), pages 1-16, March.
    6. Yuanzhi Guo & Jieyong Wang, 2021. "Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development," Land, MDPI, vol. 10(9), pages 1-16, August.
    7. Ting Du & Chao Li & Zhaolin Wang, 2023. "Spatial Differentiation and Influencing Mechanisms of Farmland Transfer Rents in Mountainous Areas: Evidence from Chongqing and Its Surrounding Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
    8. Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
    9. Guo, Yuanzhi & Liu, Yansui, 2021. "Poverty alleviation through land assetization and its implications for rural revitalization in China," Land Use Policy, Elsevier, vol. 105(C).
    10. Yuanyuan Chen & Mingyao Cai & Zemin Zhang & Mu Li, 2024. "The Impact of Land Transfer-In on Crop Planting Structure and Its Heterogeneity among Farmers: Evidence from China," Land, MDPI, vol. 13(1), pages 1-15, January.
    11. Yue Su & Chong Su & Yan Xie & Tan Li & Yongjun Li & Yuanyuan Sun, 2022. "Controlling Non-Grain Production Based on Cultivated Land Multifunction Assessment," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    12. Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
    13. Andi Syah Putra & Guangji Tong & Didit Okta Pribadi, 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    14. Qing Li & Xueyan Zhang, 2022. "Identifying Peach Trees in Cultivated Land Using U-Net Algorithm," Land, MDPI, vol. 11(7), pages 1-15, July.
    15. Kuang, Bing & Han, Jing & Lu, Xinhai & Zhang, Xupeng & Fan, Xiangyu, 2020. "Quantitative evaluation of China’s cultivated land protection policies based on the PMC-Index model," Land Use Policy, Elsevier, vol. 99(C).
    16. Ping Xue & Xinru Han & Yongchun Wang & Xiudong Wang, 2022. "Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-15, June.
    17. Guangsheng Liu & Lesong Zhao & Huiying Chen & Yuting Zhou & Hanbing Lin & Cunyue Wang & Haojuan Huang & Xiting Li & Zhongyou Yuan, 2022. "Does Farmland Transfer Lead to Non-Grain Production in Agriculture?—An Empirical Analysis Based on the Differentiation of Farmland Renting-In Objects," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    18. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    19. Jiachen Ning & Pingyu Zhang & Qifeng Yang & Zuopeng Ma, 2023. "Spatial Pattern of Farmland Transfer in Liaoning Province, China," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    20. Mei Chen & Yangbing Li & Yiyi Zhang & Limin Yu & Linyu Yang, 2023. "Evolution and Transformation Analysis of Land-use in Mountainous “Granary”—Evidence from Typical Basin in Karst Mountainous Areas of Southwest China," Land, MDPI, vol. 13(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13720-:d:1239835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.