Spatiotemporal Patterns and Driving Factors of Non-Grain Cultivated Land in China’s Three Main Functional Grain Areas
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qiu, Tongwei & Boris Choy, S.T. & Li, Shangpu & He, Qinying & Luo, Biliang, 2020. "Does land renting-in reduce grain production? Evidence from rural China," Land Use Policy, Elsevier, vol. 90(C).
- Su, Yue & Qian, Kui & Lin, Lin & Wang, Ke & Guan, Tao & Gan, Muye, 2020. "Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection," Land Use Policy, Elsevier, vol. 92(C).
- Xiaofeng Zhao & Yuqian Zheng & Xianjin Huang & Mei-Po Kwan & Yuntai Zhao, 2017. "The Effect of Urbanization and Farmland Transfer on the Spatial Patterns of Non-Grain Farmland in China," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
- Jizhou Zhang & Xiaojing Li & Shouhong Xie & Xianli Xia, 2022. "Research on the Influence Mechanism of Land Tenure Security on Farmers’ Cultivated Land Non-Grain Behavior," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, Dan & Lu, Yanchi & Liu, Yaolin & Liu, Yanfang & Tong, Zhaomin & Xing, Lijun & Dou, Chao, 2024. "Multifunctional evaluation and multiscenario regulation of non-grain farmlands from the grain security perspective: Evidence from the Wuhan Metropolitan Area, China," Land Use Policy, Elsevier, vol. 146(C).
- Liye Wang & Jiwei Xu & Yaolin Liu & Siyu Zhang, 2023. "Spatial Characteristics of the Non-Grain Production Rate of Cropland and Its Driving Factors in Major Grain-Producing Area: Evidence from Shandong Province, China," Land, MDPI, vol. 13(1), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duan Ran & Zhanlu Zhang & Yuhan Jing, 2022. "A Study on the Spatial–Temporal Evolution and Driving Factors of Non-Grain Production in China’s Major Grain-Producing Provinces," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
- Zuo Zhang & Lin Zheng & Dajie Yu, 2023. "Non-Grain Production of Cultivated Land in Hilly and Mountainous Areas at the Village Scale: A Case Study in Le’an Country, China," Land, MDPI, vol. 12(8), pages 1-17, August.
- Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).
- Jundong Hu & Hong Wang & Yu Song, 2023. "Spatio-Temporal Evolution and Driving Factors of “Non-Grain Production” in Hubei Province Based on a Non-Grain Index," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
- Yuanyuan Chen & Mu Li & Zemin Zhang, 2023. "Does the Rural Land Transfer Promote the Non-Grain Production of Cultivated Land in China?," Land, MDPI, vol. 12(3), pages 1-16, March.
- Yuanzhi Guo & Jieyong Wang, 2021. "Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development," Land, MDPI, vol. 10(9), pages 1-16, August.
- Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
- Xu, Zhan & Liang, Zhengyuan & Cheng, Jiali & Groot, Jeroen C.J. & Zhang, Chaochun & Cong, Wen-Feng & Zhang, Fusuo & van der Werf, Wopke, 2024. "Comparing the sustainability of smallholder and business farms in the North China Plain; a case study in Quzhou," Agricultural Systems, Elsevier, vol. 216(C).
- Ting Du & Chao Li & Zhaolin Wang, 2023. "Spatial Differentiation and Influencing Mechanisms of Farmland Transfer Rents in Mountainous Areas: Evidence from Chongqing and Its Surrounding Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
- Huang, Dan & Lu, Yanchi & Liu, Yaolin & Liu, Yanfang & Tong, Zhaomin & Xing, Lijun & Dou, Chao, 2024. "Multifunctional evaluation and multiscenario regulation of non-grain farmlands from the grain security perspective: Evidence from the Wuhan Metropolitan Area, China," Land Use Policy, Elsevier, vol. 146(C).
- Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
- Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
- Guo, Yuanzhi & Liu, Yansui, 2021. "Poverty alleviation through land assetization and its implications for rural revitalization in China," Land Use Policy, Elsevier, vol. 105(C).
- Yuanyuan Chen & Mingyao Cai & Zemin Zhang & Mu Li, 2024. "The Impact of Land Transfer-In on Crop Planting Structure and Its Heterogeneity among Farmers: Evidence from China," Land, MDPI, vol. 13(1), pages 1-15, January.
- Yue Su & Chong Su & Yan Xie & Tan Li & Yongjun Li & Yuanyuan Sun, 2022. "Controlling Non-Grain Production Based on Cultivated Land Multifunction Assessment," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
- Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
- Andi Syah Putra & Guangji Tong & Didit Okta Pribadi, 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
- Qing Li & Xueyan Zhang, 2022. "Identifying Peach Trees in Cultivated Land Using U-Net Algorithm," Land, MDPI, vol. 11(7), pages 1-15, July.
- Kuang, Bing & Han, Jing & Lu, Xinhai & Zhang, Xupeng & Fan, Xiangyu, 2020. "Quantitative evaluation of China’s cultivated land protection policies based on the PMC-Index model," Land Use Policy, Elsevier, vol. 99(C).
- Ping Xue & Xinru Han & Yongchun Wang & Xiudong Wang, 2022. "Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-15, June.
More about this item
Keywords
non-grain; cultivated land; spatial differentiation; driving factors; functional grain areas;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13720-:d:1239835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.