IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11562-d1203125.html
   My bibliography  Save this article

Spatio-Temporal Description of the NDVI (MODIS) of the Ecuadorian Tussock Grasses and Its Link with the Hydrometeorological Variables and Global Climatic Indices

Author

Listed:
  • Jhon Villarreal-Veloz

    (Department of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    Center for Research and Water Resources Studies (CIERHI), Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador)

  • Xavier Zapata-Ríos

    (Department of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    Center for Research and Water Resources Studies (CIERHI), Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador)

  • Karla Uvidia-Zambrano

    (Department of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador)

  • Carla Borja-Escobar

    (Department of Civil and Environmental Engineering, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador)

Abstract

This study examined the changes in tussock grass greenness over 18 years (2001–2018) using NDVI data from 10 key areas of the Páramo ecosystem in the Ecuadorian Andes. In addition, the study investigated the influence of hydrometeorological variables (precipitation, soil temperature, and water availability) and climatic indices (AAO, MEI, MJO, NAO, PDO, El Niño 1 + 2, 3, 3.4, and 4) on greenness dynamics. The spatial and temporal variations of NDVI were studied, applying several analysis and indicators, such as: the standard deviation, z -score anomalies, Sen slope, Mann–Kendall test, and time integrated-NDVI (TI-NDVI). Linear and multilinear correlations were used to evaluate the influence of hydrometeorological variables and climatic indices on the greenness of tussock. The findings of the study show that Páramo, located in the Inter-Andean valley above 2° S, is the most productive, followed by those located in the Royal Range (eastern cordillera). The anomalies and trends of NDVI on the Royal Range tended to be greening over time. NDVI showed a moderate multilinear correlation with precipitation and soil temperature, and a strong response to water availability. Finally, NDVI was weakly linearly related to the climatic indices, the most representative being the MJO, and slightly related to ENSO events. Understanding the regional and global-scale variables that control tussock grasses’ phenology will help to determine how present and future climate changes will impact this ecosystem.

Suggested Citation

  • Jhon Villarreal-Veloz & Xavier Zapata-Ríos & Karla Uvidia-Zambrano & Carla Borja-Escobar, 2023. "Spatio-Temporal Description of the NDVI (MODIS) of the Ecuadorian Tussock Grasses and Its Link with the Hydrometeorological Variables and Global Climatic Indices," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11562-:d:1203125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    3. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    2. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    3. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    4. Hyun-Jung Hong & Choong-Ki Kim & Hyun-Woo Lee & Woo-Kyun Lee, 2021. "Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019)," Land, MDPI, vol. 10(8), pages 1-15, July.
    5. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    6. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    7. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.
    8. V. P. Khanduri & C. M. Sharma & S. P. Singh, 2008. "The effects of climate change on plant phenology," Environment Systems and Decisions, Springer, vol. 28(2), pages 143-147, June.
    9. Dilsad Dagtekin & Evrim A Şahan & Thomas Denk & Nesibe Köse & H Nüzhet Dalfes, 2020. "Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-19, November.
    10. Erica N Spotswood & James W Bartolome & Barbara Allen-Diaz, 2015. "Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-18, July.
    11. Keshav Paudel & Peter Andersen, 2013. "Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya," Climatic Change, Springer, vol. 117(1), pages 149-162, March.
    12. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    13. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    14. Akhlaq Amin Wani & Amir Farooq Bhat & Aaasif Ali Gatoo & Shiba Zahoor & Basira Mehraj & Naveed Najam & Qaisar Shafi Wani & M A Islam & Shah Murtaza & Moonisa Aslam Dervash & P K Joshi, 2021. "Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-22, January.
    15. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    16. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    17. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    18. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    19. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    20. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11562-:d:1203125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.