IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11302-d1198404.html
   My bibliography  Save this article

Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir

Author

Listed:
  • Edoardo Bertone

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
    Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
    Cities Research Institute, Griffith University, Edmund Rice Drive, Southport, QLD 4222, Australia)

  • Sara Peters Hughes

    (Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia)

Abstract

A Bayesian network-based modelling framework was proposed to predict the probability of exceeding critical thresholds for chlorophyll-a and turbidity in an Australian subtropical drinking water reservoir, based on Sentinel-2 data and prior knowledge. The model was trained with quasi-synchronous historical in situ and satellite data for 2018–2023 and achieved satisfactory accuracy (Brier score < 0.27 for all models) despite limited poor water quality events in the final dataset. The graphical output of the model (posterior probability maps of high turbidity or chlorophyll-a) provides an effective means for the user to evaluate both the prediction, and the uncertainty behind the predictions in a single map. This avoids loss of trust in the model and can trigger spatially targeted data collection in order to reduce uncertainty. Future work will focus on refining the modelling methodology and its automation, as well as including other data such as in situ high-frequency sensors.

Suggested Citation

  • Edoardo Bertone & Sara Peters Hughes, 2023. "Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11302-:d:1198404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    2. Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    2. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    3. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    4. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    5. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    7. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    8. repec:osf:osfxxx:qabhj_v1 is not listed on IDEAS
    9. Beata Ferencz & Jarosław Dawidek, 2021. "Assessment of Spatial and Vertical Variability of Water Quality: Case Study of a Polymictic Polish Lake," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    10. Verda Kocabas & Suzana Dragicevic, 2013. "Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model," Journal of Geographical Systems, Springer, vol. 15(4), pages 403-426, October.
    11. Ruining Jin & Tam-Tri Le & Thu-Trang Vuong & Thi-Phuong Nguyen & Giang Hoang & Minh-Hoang Nguyen & Quan-Hoang Vuong, 2023. "A Gender Study of Food Stress and Implications for International Students Acculturation," World, MDPI, vol. 4(1), pages 1-15, January.
    12. Kragt, Marit Ellen & Bennett, Jeffrey W., 2009. "Integrating economic values and catchment modelling," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47956, Australian Agricultural and Resource Economics Society.
    13. Jin, Ruining & Hoang, Giang & Nguyen, Thi-Phuong & Nguyen, Phuong-Tri & Le, Tam-Tri & La, Viet-Phuong & Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2022. "An analytical framework-based pedagogical method for scholarly community coaching: A proof of concept," OSF Preprints qabhj, Center for Open Science.
    14. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    15. Xiaoliang Xie & Jinxia Zuo & Bingqi Xie & Thomas A. Dooling & Selvarajah Mohanarajah, 2021. "Bayesian network reasoning and machine learning with multiple data features: air pollution risk monitoring and early warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2555-2572, July.
    16. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    17. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    18. Yi-Sheng Chao & Marco Scutari & Tai-Shen Chen & Chao-Jung Wu & Madeleine Durand & Antoine Boivin & Hsing-Chien Wu & Wei-Chih Chen, 2018. "A network perspective of engaging patients in specialist and chronic illness care: The 2014 International Health Policy Survey," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    19. Rasoul Amirzadeh & Asef Nazari & Dhananjay Thiruvady & Mong Shan Ee, 2023. "Causal Modelling of Cryptocurrency Price Movements Using Discretisation-Aware Bayesian Networks," Papers 2303.16148, arXiv.org, revised Aug 2025.
    20. Ilić, Milica & Srđević, Zorica & Srđević, Bojan & Stammel, Barbara & Borgs, Tim & Benka, Pavel & Grabić, Jasna & Ždero, Senka, 2024. "The nexus between pressures and ecosystem services in floodplains: New methods to integrate stakeholders’ knowledge for water quality management in Serbia," Ecosystem Services, Elsevier, vol. 68(C).
    21. Mandana Rezaeiahari & Clare C Brown & Mir M Ali & Jyotishka Datta & J Mick Tilford, 2021. "Understanding racial disparities in severe maternal morbidity using Bayesian network analysis," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-18, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11302-:d:1198404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.