IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9857-d1175712.html
   My bibliography  Save this article

Application and Research of Liuxihe Model in the Simulation of Inflow Flood at Zaoshi Reservoir

Author

Listed:
  • Yanzheng Zhu

    (School of Geographic and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yangbo Chen

    (School of Geographic and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yanjun Zhao

    (School of Geographic and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Feng Zhou

    (School of Geographic and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Shichao Xu

    (School of Geographic and Planning, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Floods occur frequently in China, and watershed floods are caused mainly by intensive rainfall, but the spatial distribution of this rainfall is often very uneven. Thus, a watershed hydrological model that enables a consideration of a heterogeneous spatial distribution of rainfall is needed. In this study, a flood forecasting scheme based on the Liuxihe model is established for the Zaoshi Reservoir. The particle swarm optimization (PSO) algorithm is used to optimize the model parameters for flood simulation, and the model’s performance is assessed by a comparison with measured flood data. The spatial distributions of rainfall selected for this study are non-uniform, with much greater rainfall in some areas than in others in some cases. Rainfall may be concentrated in the middle of the basin, in the reservoir area, or in the upstream portion of the basin. The Liuxihe-model-based flood inflow forecasting scheme for the Zaoshi Reservoir demonstrates an excellent simulation effect, with an average peak simulation accuracy of 96.3%, an average peak time of 1.042 h early, and an average Nash–Sutcliffe coefficient of 0.799. Under the condition of an uneven spatial distribution of rainfall, the Liuxihe model simulates floods well. The PSO algorithm significantly improves the model’s simulation accuracy, and its practical application requires only the selection of a typical flood for parameter optimization. Thus, the flood simulation effect of the Liuxihe model is ideal for the watershed above the Zaoshi Reservoir, and the scheme developed in this study can be applied for operational flood forecasting.

Suggested Citation

  • Yanzheng Zhu & Yangbo Chen & Yanjun Zhao & Feng Zhou & Shichao Xu, 2023. "Application and Research of Liuxihe Model in the Simulation of Inflow Flood at Zaoshi Reservoir," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9857-:d:1175712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yudong Zhang & Shuihua Wang & Genlin Ji, 2015. "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-38, October.
    2. Aklilu Fikresilassie Kabiso & Eoin O’Neill & Finbarr Brereton & Wondimu Abeje, 2022. "Rapid Urbanization in Ethiopia: Lakes as Drivers and Its Implication for the Management of Common Pool Resources," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    3. Guangpeng Wang & Yong Liu & Ziying Hu & Yanli Lyu & Guoming Zhang & Jifu Liu & Yun Liu & Yu Gu & Xichen Huang & Hao Zheng & Qingyan Zhang & Zongze Tong & Chang Hong & Lianyou Liu, 2020. "Flood Risk Assessment Based on Fuzzy Synthetic Evaluation Method in the Beijing-Tianjin-Hebei Metropolitan Area, China," Sustainability, MDPI, vol. 12(4), pages 1-30, February.
    4. Thanawat Bremard, 2022. "Monitoring Land Subsidence: The Challenges of Producing Knowledge and Groundwater Management Indicators in the Bangkok Metropolitan Region, Thailand," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    5. Ming Zhang & Wenbo Xiang & Meilan Chen & Zisen Mao, 2018. "Measuring Social Vulnerability to Flood Disasters in China," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    2. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    3. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    4. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    5. Cui, Huixia & Chen, Xiangyong & Guo, Ming & Jiao, Yang & Cao, Jinde & Qiu, Jianlong, 2023. "A distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Grzegorz Sroka & Mariusz Oszust, 2021. "Approximation of the Constant in a Markov-Type Inequality on a Simplex Using Meta-Heuristics," Mathematics, MDPI, vol. 9(3), pages 1-10, January.
    7. Ying Li & Yung‐ho Chiu & Tai‐Yu Lin & Hongyi Cen & Yabin Liu, 2021. "Evaluation of natural disaster treatment efficiency in 27 Chinese provinces," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 256-288, August.
    8. Genbao Liu & Tengfei Zhao & Hong Yan & Han Wu & Fuming Wang, 2022. "Evaluation of Urban Green Building Design Schemes to Achieve Sustainability Based on the Projection Pursuit Model Optimized by the Atomic Orbital Search," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    9. Qian, Jing & Sun, Xiangyu & Zhong, Xiaohui & Zeng, Jiajun & Xu, Fei & Zhou, Teng & Shi, Kezhong & Li, Qingan, 2024. "Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm," Applied Energy, Elsevier, vol. 355(C).
    10. Perera, A.T.D. & Soga, Kenichi & Xu, Yujie & Nico, Peter S. & Hong, Tianzhen, 2023. "Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems," Applied Energy, Elsevier, vol. 340(C).
    11. Zahra Ebrahimi Gatgash & Seyed Hamidreza Sadeghi, 2023. "Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9673-9702, September.
    12. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    13. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    14. Lin Wang & Xiyu Liu & Jianhua Qu & Yuzhen Zhao & Zhenni Jiang & Ning Wang, 2022. "An Extended Membrane System Based on Cell-like P Systems and Improved Particle Swarm Optimization for Image Segmentation," Mathematics, MDPI, vol. 10(22), pages 1-32, November.
    15. Wenqing Song & Shizhuo Wang & Jiang Zhao & Shiliang Xu & Xuefei Zhou & Yalei Zhang, 2023. "Comprehensive Treatment for River Pollution in a Coastal City with a Complex River Network: A Case Study in Sanya, China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    16. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    17. Wen-Cheng Liu & Tien-Hsiang Hsieh & Hong-Ming Liu, 2021. "Flood Risk Assessment in Urban Areas of Southern Taiwan," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    18. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.
    19. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Adebola Orogun & Oluwaseun Fadeyi & Ondrej Krejcar, 2019. "Sustainable Communication Systems: A Graph-Labeling Approach for Cellular Frequency Allocation in Densely-Populated Areas," Future Internet, MDPI, vol. 11(9), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9857-:d:1175712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.