IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8705-d1157749.html
   My bibliography  Save this article

Implementation of Magnetic Markers for the Diagnostics of Conveyor Belt Transportation Systems

Author

Listed:
  • Karol Semrád

    (Faculty of Aeronautics, Technical University of Košice, Rampová 7, 040 01 Košice, Slovakia)

  • Katarína Draganová

    (Faculty of Aeronautics, Technical University of Košice, Rampová 7, 040 01 Košice, Slovakia)

Abstract

Together with the research and development of belt conveyors, diagnostic methods for their reliable operation have been developed. Our research is focused on the development of a diagnostic system and method of sensing the magnetic markers implemented directly into the conveyor belt, as in this way, it is possible to determine the velocity of the conveyor belt, which can be a source of information about the potential malfunction of the drive unit, control system, or of the belt itself. The magnetic markers can be also used to mark the particular segments of the conveyor belt, which can significantly enhance maintenance procedures thanks to the identification of damaged segments and the possibility to stop the conveyor belt in the maintenance area. However, problems can occur with the implementation of the magnetic markers. To prevent the magnetic markers from falling out, FEM (finite element method) simulations and analyses of commercially available magnetic markers with different dimensions were performed to analyze the nominal and friction force and related average contact pressure acting on the magnetic markers implemented into holes drilled into the conveyor belt in the curved state when passing through the drum.

Suggested Citation

  • Karol Semrád & Katarína Draganová, 2023. "Implementation of Magnetic Markers for the Diagnostics of Conveyor Belt Transportation Systems," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8705-:d:1157749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    2. Hamid Shiri & Jacek Wodecki & Bartłomiej Ziętek & Radosław Zimroz, 2021. "Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler," Energies, MDPI, vol. 14(22), pages 1-17, November.
    3. Xiangong Li & Yu Li & Yuzhi Zhang & Feng Liu & Yu Fang, 2020. "Fault Diagnosis of Belt Conveyor Based on Support Vector Machine and Grey Wolf Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    2. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    3. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    4. Piotr Bortnowski & Horst Gondek & Robert Król & Daniela Marasova & Maksymilian Ozdoba, 2023. "Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Mohammad Siami & Tomasz Barszcz & Jacek Wodecki & Radoslaw Zimroz, 2022. "Design of an Infrared Image Processing Pipeline for Robotic Inspection of Conveyor Systems in Opencast Mining Sites," Energies, MDPI, vol. 15(18), pages 1-21, September.
    6. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    7. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Sergey Zhironkin, 2022. "Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support," Energies, MDPI, vol. 15(3), pages 1-15, January.
    8. Hamid Shiri & Jacek Wodecki & Bartłomiej Ziętek & Radosław Zimroz, 2021. "Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    10. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    11. Mirosław Bajda & Monika Hardygóra & Daniela Marasová, 2022. "Energy Efficiency of Conveyor Belts in Raw Materials Industry," Energies, MDPI, vol. 15(9), pages 1-6, April.
    12. Karol Semrád & Katarína Draganová, 2022. "Non-Destructive Testing of Pipe Conveyor Belts Using Glass-Coated Magnetic Microwires," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8705-:d:1157749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.