IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8342-d1151950.html
   My bibliography  Save this article

Study on a Stomatal Conductance Model of Grape Leaves in Extremely Arid Areas

Author

Listed:
  • Ruifeng Sun

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Juanjuan Ma

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xihuan Sun

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Shijian Bai

    (Xinjiang Uighur Autonomous Region Grapes and Melons Research Institution, Turpan 838200, China)

  • Lijian Zheng

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jiachang Guo

    (College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Stomata are essential for regulating the exchange of water and energy between plants and the atmosphere. In the context of climate warming, especially in extremely arid regions, the knowledge of stomatal conductance variation patterns is fundamental to the study of crop evapotranspiration, productivity and drought resistance characteristics. The accurate simulation of stomatal conductance in this region is an important prerequisite for the optimal regulation of the crop growth environment. In this study, a two-year field experiment was carried out in vineyards in an extremely arid region. The Jarvis model and BWB model were used to evaluate the daily changes in stomatal conductance. The results showed that stomatal conductance was significantly correlated with environmental factors (temperature difference between leaf and air (ΔT), photosynthetically active radiation and air temperature). The Jarvis and BWB models performed well. However, the response function of the environment factor in the Jarvis model can affect the model performance. The ΔT effectively improved the model, and the modified Jarvis model outperformed the modified BWB model. The R 2 and model slope b of the modified Jarvis model increased by 45.18–70.37% and 2.51–3.12%, respectively. RMSE and MAE decreased by 38.98–43.12% and 42.69–44.35%, respectively. Overall, the Jarvis3–ΔT model had a good effect on the simulation of the daily change of stomatal conductance during the critical period of grape growth, and the Jarvis3–ΔT model was the best stomatal conductance model in this study. The results of the study are of great significance for further improving the sustainable use of water resources in grapevines in extremely arid regions.

Suggested Citation

  • Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Shijian Bai & Lijian Zheng & Jiachang Guo, 2023. "Study on a Stomatal Conductance Model of Grape Leaves in Extremely Arid Areas," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8342-:d:1151950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi, Yue & Zhang, Qiang & Hu, Shujuan & Wang, Runyuan & Wang, Heling & Zhang, Kai & Zhao, Hong & Zhao, Funian & Chen, Fei & Yang, Yang & Tang, Guoying & Hu, Yanbin, 2023. "Applicability of stomatal conductance models comparison for persistent water stress processes of spring maize in water resources limited environmental zone," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Tuo Han & Qi Feng & Tengfei Yu & Xiaomei Yang & Xiaofang Zhang & Kuan Li, 2022. "Characteristic of Stomatal Conductance and Optimal Stomatal Behaviour in an Arid Oasis of Northwestern China," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanouil Kontaxakis & Dimitrios Papadimitriou & Ioannis Daliakopoulos & Ioannis Sabathianakis & Andriana Stavropoulou & Thrassyvoulos Manios, 2023. "Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars ( Vitis vinifera," Agriculture, MDPI, vol. 13(9), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8342-:d:1151950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.