IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3587-d774480.html
   My bibliography  Save this article

Response of Fish Community to Building Block Methodology Mimicking Natural Flow Regime Patterns in Nakdong River in South Korea

Author

Listed:
  • Soohong Kim

    (Division for Integrated Water Management, Water and Land Research Group, Korea Environment Institute (KEI), Sejong 30147, Korea)

  • Kichul Jung

    (Division for Integrated Water Management, Water and Land Research Group, Korea Environment Institute (KEI), Sejong 30147, Korea)

  • Hyeongsik Kang

    (Division for Integrated Water Management, Water and Land Research Group, Korea Environment Institute (KEI), Sejong 30147, Korea)

Abstract

Water regulation and flood control of rivers are changing due to streamflow depletion following industrialization and urbanization, significantly impacting aquatic ecosystems. Therefore, restoration of the ecological environment is necessary to maintain a healthy river ecosystem. For ecosystem restoration, the amount of discharge from dams must be controlled and the appropriate environmental flow must be calculated according to the fish species. The change in the flow through the dam due to hydropeaking directly impacts the fish. This study aimed to construct a building block methodology (BBM) using dam inflows in the Gudam Bridge basin upstream of the Nakdong River, build a River2D model of this area, and calculate the natural flow regime and the weighted usable area (WUA). The analysis of the scenarios for the whole period (2006–2020) and by flow regime showed that WUA decreased in some periods, but improved overall in the scenario reflecting the BBM. For Zacco platypus , a dominant fish species of the Gudam Bridge, WUA decreased by ~11% in some periods (in September) but the habitat improvement effect measured up to 79%. Changing the dam discharge pattern by considering the flow regime seemed more effective in improving the habitat of fish living downstream.

Suggested Citation

  • Soohong Kim & Kichul Jung & Hyeongsik Kang, 2022. "Response of Fish Community to Building Block Methodology Mimicking Natural Flow Regime Patterns in Nakdong River in South Korea," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3587-:d:774480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi, Yujun & Wang, Zhaoyin & Yang, Zhifeng, 2010. "Two-dimensional habitat modeling of Chinese sturgeon spawning sites," Ecological Modelling, Elsevier, vol. 221(5), pages 864-875.
    2. Radinger, Johannes & Hölker, Franz & Wolter, Christian, 2017. "Assessing how uncertainty and stochasticity affect the dispersal of fish in river networks," Ecological Modelling, Elsevier, vol. 359(C), pages 220-228.
    3. Siyeon Kim & Jiwan Lee & Seol Jeon & Moonyoung Lee & Heejin An & Kichul Jung & Seongjoon Kim & Daeryong Park, 2021. "Correlation Analysis between Hydrologic Flow Metrics and Benthic Macroinvertebrates Index (BMI) in the Han River Basin, South Korea," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    4. Saeed Nikghalb & Alireza Shokoohi & Vijay P. Singh & Ruihong Yu, 2016. "Ecological Regime versus Minimum Environmental Flow:Comparison of Results for a River in a Semi Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4969-4984, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurelian Cosmin Moldovan & Tomi Alexandrel Hrăniciuc & Valer Micle & Nicolae Marcoie, 2023. "Research on the Sustainable Development of the Bistrita Ardeleana River in Order to Stop the Erosion of the Riverbanks and the Thalweg," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zou & Dehua Mao, 2022. "Simulation of Freshwater Ecosystem Service Flows under Land-Use Change: A Case Study of Lianshui River Basin, China," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    2. Yun Lu & Wan-Yi Zhu & Qing-Yuan Liu & Yong Li & Hui-Wu Tian & Bi-Xin Cheng & Ze-Yu Zhang & Zi-Han Wu & Jie Qing & Gan Sun & Xin Yan, 2022. "Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    3. Mahdi Sedighkia & Asghar Abdoli, 2022. "Optimizing environmental flow regime by integrating river and reservoir ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2079-2094, April.
    4. Shi, Xuan & Liu, Jingling & You, Xiaoguang & Bao, Kun & Meng, Bo & Chen, Bin, 2017. "Evaluation of river habitat integrity based on benthic macroinvertebrate-based multi-metric model," Ecological Modelling, Elsevier, vol. 353(C), pages 63-76.
    5. Dai, Dongchen & Fang, Hongwei & Li, Songheng & He, Guojian & Huang, Lei & Peng, Wenqi, 2016. "Numerical simulation of fish movement behavior for habitat assessment by Eulerian-Eulerian-Habitat-Selection (EEHS) method," Ecological Modelling, Elsevier, vol. 337(C), pages 156-167.
    6. Xin Yan & Yuejian Wang & Yuejiao Chen & Guang Yang & Baofei Xia & Hailiang Xu, 2022. "Study on the Spatial Allocation of Receding Land and Water Reduction under Water Resource Constraints in Arid Zones," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    7. Rong-Song Chen & Chan-Ming Tsai, 2017. "Development of an Evaluation System for Sustaining Reservoir Functions—A Case Study of Shiwen Reservoir in Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    8. Yang, Lu & Hou, Jingming & Cheng, Long & Wang, Pan & Pan, Zhanpeng & Wang, Tian & Ma, Yongyong & Xujun, Gao & Jixin, Sun & Liu, Na, 2021. "Application of Habitat Suitability Model Coupling with High - precision Hydrodynamic Processes," Ecological Modelling, Elsevier, vol. 462(C).
    9. Byungwoong Choi & Byungik Kim & Jonghwan Park & Tae-Woo Kang & Dong-Seok Shin & Eun Hye Na & Jiyeon Choi, 2022. "An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    10. Schmidt, Heiko & Radinger, Johannes & Teschlade, Daniel & Stoll, Stefan, 2020. "The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt," Ecological Modelling, Elsevier, vol. 418(C).
    11. Kim, Seung Ki & Choi, Sung-Uk, 2018. "Prediction of suitable feeding habitat for fishes in a stream using physical habitat simulations," Ecological Modelling, Elsevier, vol. 385(C), pages 65-77.
    12. Schwamborn, R. & Mildenberger, T.K. & Taylor, M.H., 2019. "Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN," Ecological Modelling, Elsevier, vol. 393(C), pages 37-51.
    13. Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
    14. Zhihui Mao & Fang Ding & Lilai Yuan & Yan Zhang & Zhaohui Ni & Yingren Li & Lin Wang & Yunfeng Li, 2023. "The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    15. Shibao Lu & Wenting Cai & Wei Shao & Farhad Taghizadeh-Hesary & Muhammad Faisal & Hongbo Zhang & Yangang Xue, 2021. "Ecological Water Requirement in Upper and Middle Reaches of the Yellow River Based on Flow Components and Hydraulic Index," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    16. Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
    17. Nukazawa, Kei & Shiraiwa, Jun-ichi & Kazama, So, 2011. "Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature," Ecological Modelling, Elsevier, vol. 222(20), pages 3718-3726.
    18. Wei Xu, 2020. "Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4725-4738, December.
    19. Wentong Hu & Wenquan Gu & Donghao Miao & Dongguo Shao, 2022. "Research on the Ecological Flow and Water Replenishment Thresholds for Diversion Rivers Based on the MC-LOR Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5353-5369, November.
    20. Ravindra Kumar Verma & Ashish Pandey & Surendra Kumar Mishra & Vijay P. Singh, 2023. "A Procedure for Assessment of Environmental Flows Incorporating Inter- and Intra-Annual Variability in Dam-Regulated Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3259-3297, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3587-:d:774480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.