IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2801-d760402.html
   My bibliography  Save this article

Temperature Optimization by Electrochemical Method for Improving Antioxidant Compound Extraction Efficiency from Origanum vulgare L. and Its Application in a Bread Production

Author

Listed:
  • Anna Mikołajczak

    (Department of Non-Food Products Quality and Packaging Development, Poznan University of Economics and Business, 61-875 Poznan, Poland)

  • Marta Ligaj

    (Department of Non-Food Products Quality and Packaging Development, Poznan University of Economics and Business, 61-875 Poznan, Poland)

  • Joanna Kobus-Cisowska

    (Department of Gastronomy Sciences and Functional Food, Poznan University of Life Sciences, 60-637 Poznan, Poland)

Abstract

This study aims to evaluate the effect of extraction temperature on the electrochemical activity of antioxidant compounds in oregano extract and its application in a bread production. Temperature optimisation was performed by determining the electrochemical index (EI), calculated on the parameters of individual peaks observed on the square wave voltammograms (SWV). The highest value of EI (2.5758 µA/V) was observed at 85 °C for the oregano extract. The composition of several types of bread with oregano extract or dried oregano leaves was then proposed. To specify bread samples, both newly prepared and during their storage, their antioxidant properties were determined using FRAP (Ferric Reducing Antioxidant Power) and CUPRAC (Cupric Reducing Antioxidant Capacity) methods. The study revealed that the addition of extract from oregano or oregano leaves increased the antioxidant compounds content in the bread from 30% to more than 138% compared to the control bread samples. The performed sensory evaluation of the bread samples revealed their high acceptability. It was found that the stored bread with oregano leaves changed sensory qualities to a lesser extent compared to the bread with oregano extract.

Suggested Citation

  • Anna Mikołajczak & Marta Ligaj & Joanna Kobus-Cisowska, 2022. "Temperature Optimization by Electrochemical Method for Improving Antioxidant Compound Extraction Efficiency from Origanum vulgare L. and Its Application in a Bread Production," Sustainability, MDPI, vol. 14(5), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2801-:d:760402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toren Finkel & Nikki J. Holbrook, 2000. "Oxidants, oxidative stress and the biology of ageing," Nature, Nature, vol. 408(6809), pages 239-247, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hill, Terrence D. & Ellison, Christopher G. & Burdette, Amy M. & Taylor, John & Friedman, Katherine L., 2016. "Dimensions of religious involvement and leukocyte telomere length," Social Science & Medicine, Elsevier, vol. 163(C), pages 168-175.
    2. Benu George & Pradeep Varathan & T. V. Suchithra, 2020. "Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1539-1561, March.
    3. Dan Zhang & Yongjie Sun & Zhichao Wang & Fang Liu & Xuanjun Zhang, 2023. "Switchable biomimetic nanochannels for on-demand SO2 detection by light-controlled photochromism," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Daniel L Belavý & Ulf Gast & Martin Daumer & Elena Fomina & Rainer Rawer & Hans Schießl & Stefan Schneider & Harald Schubert & Cristina Soaz & Dieter Felsenberg, 2013. "Progressive Adaptation in Physical Activity and Neuromuscular Performance during 520d Confinement," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-7, March.
    5. Hyo Sub Choi & Ajay Bhat & Marshall B. Howington & Megan L. Schaller & Rebecca L. Cox & Shijiao Huang & Safa Beydoun & Hillary A. Miller & Angela M. Tuckowski & Joy Mecano & Elizabeth S. Dean & Lindy , 2023. "FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Leandro V.B. Carvalho & Sandra S. Hacon & Claudia M. Vega & Jucilene A. Vieira & Ariane L. Larentis & Rita C. O. C. Mattos & Daniel Valente & Isabele C. Costa-Amaral & Dennys S. Mourão & Gabriela P. S, 2019. "Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil," IJERPH, MDPI, vol. 16(15), pages 1-15, July.
    7. Panduranga Murthy G & Leelaja BC & Ravishankar HG & Dharshan Raj CG & Rajesh Kumar, 2018. "Evaluation of Neuroprotection and Antioxidant Activities via Drosophila Model System in the Active Principle Derived from Sida Glutinosa Comm. Ex Cav. - An Aboriginal Ethno-Medicinal Plant Drug Practi," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 11(5), pages 8855-8862, December.
    8. Akiko Koto & Makoto Tamura & Pui Shan Wong & Sachiyo Aburatani & Eyal Privman & Céline Stoffel & Alessandro Crespi & Sean Keane McKenzie & Christine Mendola & Tomas Kay & Laurent Keller, 2023. "Social isolation shortens lifespan through oxidative stress in ants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Cheol Park & Su Hyun Hong & Soon Shik Shin & Dae-Sung Lee & Min Ho Han & Hee-Jae Cha & Suhkmann Kim & Heui-Soo Kim & Gi-Young Kim & Eui Kyun Park & You-Jin Jeon & Yung Hyun Choi, 2018. "Activation of the Nrf2/HO-1 Signaling Pathway Contributes to the Protective Effects of Sargassum serratifolium Extract against Oxidative Stress-Induced DNA Damage and Apoptosis in SW1353 Human Chondro," IJERPH, MDPI, vol. 15(6), pages 1-13, June.
    10. Xinyue Zhang & Xiaolu Gao & Danxian Wu & Zening Xu & Hongjie Wang, 2021. "The Role of Big Data in Aging and Older People’s Health Research: A Systematic Review and Ecological Framework," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    11. Cheol Park & Da Hye Kwon & Su Jung Hwang & Min Ho Han & Jin-Woo Jeong & Sang Hoon Hong & Hee-Jae Cha & Su-Hyun Hong & Gi-Young Kim & Hyo-Jong Lee & Suhkmann Kim & Heui-Soo Kim & Yung Hyun Choi, 2019. "Protective Effects of Nargenicin A1 against Tacrolimus-Induced Oxidative Stress in Hirame Natural Embryo Cells," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    12. Jamie L. Endicott & Paula A. Nolte & Hui Shen & Peter W. Laird, 2022. "Cell division drives DNA methylation loss in late-replicating domains in primary human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. K. A. Gajewska & H. Lescesen & M. Ramialison & K. M. Wagstaff & D. A. Jans, 2021. "Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Victória Assis & Ivo Vieira de Sousa Neto & Filipe M. Ribeiro & Rita de Cassia Marqueti & Octávio Luiz Franco & Samuel da Silva Aguiar & Bernardo Petriz, 2022. "The Emerging Role of the Aging Process and Exercise Training on the Crosstalk between Gut Microbiota and Telomere Length," IJERPH, MDPI, vol. 19(13), pages 1-11, June.
    15. Marc Thilo Figge & Andreas S Reichert & Michael Meyer-Hermann & Heinz D Osiewacz, 2012. "Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.
    16. Mirre J P Simons & Alan A Cohen & Simon Verhulst, 2012. "What Does Carotenoid-Dependent Coloration Tell? Plasma Carotenoid Level Signals Immunocompetence and Oxidative Stress State in Birds–A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-1, August.
    17. Mustafa Mortas, 2023. "Characterization of a New Powdered, Milk-Based Medicinal Plant ( Alcea rosea ) Drink Product," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    18. Mohamed Saber Numan & Jacques P. Brown & Laëtitia Michou, 2015. "Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases," IJERPH, MDPI, vol. 12(2), pages 1-17, February.
    19. Natasha B. Scott & Nicola S. Pocock, 2021. "The Health Impacts of Hazardous Chemical Exposures among Child Labourers in Low- and Middle-Income Countries," IJERPH, MDPI, vol. 18(10), pages 1-34, May.
    20. Onni Niemelä, 2016. "Biomarker-Based Approaches for Assessing Alcohol Use Disorders," IJERPH, MDPI, vol. 13(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2801-:d:760402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.