IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36181-0.html
   My bibliography  Save this article

FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans

Author

Listed:
  • Hyo Sub Choi

    (University of Michigan)

  • Ajay Bhat

    (University of Michigan)

  • Marshall B. Howington

    (University of Michigan)

  • Megan L. Schaller

    (University of Michigan)

  • Rebecca L. Cox

    (University of Michigan)

  • Shijiao Huang

    (University of Michigan)

  • Safa Beydoun

    (University of Michigan)

  • Hillary A. Miller

    (University of Michigan)

  • Angela M. Tuckowski

    (University of Michigan)

  • Joy Mecano

    (University of Michigan)

  • Elizabeth S. Dean

    (University of Michigan)

  • Lindy Jensen

    (University of Michigan)

  • Daniel A. Beard

    (University of Michigan)

  • Charles R. Evans

    (University of Michigan)

  • Scott F. Leiser

    (University of Michigan
    University of Michigan)

Abstract

Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.

Suggested Citation

  • Hyo Sub Choi & Ajay Bhat & Marshall B. Howington & Megan L. Schaller & Rebecca L. Cox & Shijiao Huang & Safa Beydoun & Hillary A. Miller & Angela M. Tuckowski & Joy Mecano & Elizabeth S. Dean & Lindy , 2023. "FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36181-0
    DOI: 10.1038/s41467-023-36181-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36181-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36181-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanqiong Zhang & Dongliang Chen & Michael A Smith & Baohong Zhang & Xiaoping Pan, 2012. "Selection of Reliable Reference Genes in Caenorhabditis elegans for Analysis of Nanotoxicity," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-7, March.
    2. Byung Cheon Lee & Alaattin Kaya & Siming Ma & Gwansu Kim & Maxim V. Gerashchenko & Sun Hee Yim & Zhen Hu & Lawrence G. Harshman & Vadim N. Gladyshev, 2014. "Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
    3. Andrea Annibal & Rebecca George Tharyan & Maribel Fides Schonewolff & Hannah Tam & Christian Latza & Markus Max Karl Auler & Sebastian Grönke & Linda Partridge & Adam Antebi, 2021. "Author Correction: Regulation of the one carbon folate cycle as a shared metabolic signature of longevity," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    4. Fumiaki Obata & Masayuki Miura, 2015. "Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    5. Andrea Annibal & Rebecca George Tharyan & Maribel Fides Schonewolff & Hannah Tam & Christian Latza & Markus Max Karl Auler & Sebastian Grönke & Linda Partridge & Adam Antebi, 2021. "Regulation of the one carbon folate cycle as a shared metabolic signature of longevity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Toren Finkel & Nikki J. Holbrook, 2000. "Oxidants, oxidative stress and the biology of ageing," Nature, Nature, vol. 408(6809), pages 239-247, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruohong Wang & Yandong Yin & Jingshu Li & Hongmiao Wang & Wanting Lv & Yang Gao & Tangci Wang & Yedan Zhong & Zhiwei Zhou & Yuping Cai & Xiaoyang Su & Nan Liu & Zheng-Jiang Zhu, 2022. "Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Eunah Kim & Andrea Annibal & Yujin Lee & Hae-Eun H. Park & Seokjin Ham & Dae-Eun Jeong & Younghun Kim & Sangsoon Park & Sujeong Kwon & Yoonji Jung & JiSoo Park & Sieun S. Kim & Adam Antebi & Seung-Jae, 2023. "Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Hina Kosakamoto & Fumiaki Obata & Junpei Kuraishi & Hide Aikawa & Rina Okada & Joshua N. Johnstone & Taro Onuma & Matthew D. W. Piper & Masayuki Miura, 2023. "Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Hill, Terrence D. & Ellison, Christopher G. & Burdette, Amy M. & Taylor, John & Friedman, Katherine L., 2016. "Dimensions of religious involvement and leukocyte telomere length," Social Science & Medicine, Elsevier, vol. 163(C), pages 168-175.
    5. Benu George & Pradeep Varathan & T. V. Suchithra, 2020. "Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1539-1561, March.
    6. Dan Zhang & Yongjie Sun & Zhichao Wang & Fang Liu & Xuanjun Zhang, 2023. "Switchable biomimetic nanochannels for on-demand SO2 detection by light-controlled photochromism," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Juewon Kim & Yunju Jo & Donghyun Cho & Dongryeol Ryu, 2022. "L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Daniel L Belavý & Ulf Gast & Martin Daumer & Elena Fomina & Rainer Rawer & Hans Schießl & Stefan Schneider & Harald Schubert & Cristina Soaz & Dieter Felsenberg, 2013. "Progressive Adaptation in Physical Activity and Neuromuscular Performance during 520d Confinement," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-7, March.
    9. Leandro V.B. Carvalho & Sandra S. Hacon & Claudia M. Vega & Jucilene A. Vieira & Ariane L. Larentis & Rita C. O. C. Mattos & Daniel Valente & Isabele C. Costa-Amaral & Dennys S. Mourão & Gabriela P. S, 2019. "Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil," IJERPH, MDPI, vol. 16(15), pages 1-15, July.
    10. Panduranga Murthy G & Leelaja BC & Ravishankar HG & Dharshan Raj CG & Rajesh Kumar, 2018. "Evaluation of Neuroprotection and Antioxidant Activities via Drosophila Model System in the Active Principle Derived from Sida Glutinosa Comm. Ex Cav. - An Aboriginal Ethno-Medicinal Plant Drug Practi," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 11(5), pages 8855-8862, December.
    11. Christopher Livelo & Yiming Guo & Farah Abou Daya & Vasanthi Rajasekaran & Shweta Varshney & Hiep D. Le & Stephen Barnes & Satchidananda Panda & Girish C. Melkani, 2023. "Time-restricted feeding promotes muscle function through purine cycle and AMPK signaling in Drosophila obesity models," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Akiko Koto & Makoto Tamura & Pui Shan Wong & Sachiyo Aburatani & Eyal Privman & Céline Stoffel & Alessandro Crespi & Sean Keane McKenzie & Christine Mendola & Tomas Kay & Laurent Keller, 2023. "Social isolation shortens lifespan through oxidative stress in ants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Cheol Park & Su Hyun Hong & Soon Shik Shin & Dae-Sung Lee & Min Ho Han & Hee-Jae Cha & Suhkmann Kim & Heui-Soo Kim & Gi-Young Kim & Eui Kyun Park & You-Jin Jeon & Yung Hyun Choi, 2018. "Activation of the Nrf2/HO-1 Signaling Pathway Contributes to the Protective Effects of Sargassum serratifolium Extract against Oxidative Stress-Induced DNA Damage and Apoptosis in SW1353 Human Chondro," IJERPH, MDPI, vol. 15(6), pages 1-13, June.
    14. Martín Bustelo & Martín A Bruno & César F Loidl & Manuel Rey-Funes & Harry W M Steinbusch & Antonio W D Gavilanes & D L A van den Hove, 2020. "Statistical differences resulting from selection of stable reference genes after hypoxia and hypothermia in the neonatal rat brain," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    15. Xinyue Zhang & Xiaolu Gao & Danxian Wu & Zening Xu & Hongjie Wang, 2021. "The Role of Big Data in Aging and Older People’s Health Research: A Systematic Review and Ecological Framework," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    16. Cheol Park & Da Hye Kwon & Su Jung Hwang & Min Ho Han & Jin-Woo Jeong & Sang Hoon Hong & Hee-Jae Cha & Su-Hyun Hong & Gi-Young Kim & Hyo-Jong Lee & Suhkmann Kim & Heui-Soo Kim & Yung Hyun Choi, 2019. "Protective Effects of Nargenicin A1 against Tacrolimus-Induced Oxidative Stress in Hirame Natural Embryo Cells," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    17. Jamie L. Endicott & Paula A. Nolte & Hui Shen & Peter W. Laird, 2022. "Cell division drives DNA methylation loss in late-replicating domains in primary human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. K. A. Gajewska & H. Lescesen & M. Ramialison & K. M. Wagstaff & D. A. Jans, 2021. "Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Victória Assis & Ivo Vieira de Sousa Neto & Filipe M. Ribeiro & Rita de Cassia Marqueti & Octávio Luiz Franco & Samuel da Silva Aguiar & Bernardo Petriz, 2022. "The Emerging Role of the Aging Process and Exercise Training on the Crosstalk between Gut Microbiota and Telomere Length," IJERPH, MDPI, vol. 19(13), pages 1-11, June.
    20. Marc Thilo Figge & Andreas S Reichert & Michael Meyer-Hermann & Heinz D Osiewacz, 2012. "Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36181-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.