IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2559-d756260.html
   My bibliography  Save this article

The Importance of Adopting a Safe System Approach—Translation of Principles into Practical Solutions

Author

Listed:
  • Bruce Corben

    (Corben Consulting, Melbourne, VIC 3000, Australia)

  • Sujanie Peiris

    (Monash University Accident Research Centre, Clayton Campus, Monash University, Clayton, VIC 3800, Australia)

  • Suryaprakash Mishra

    (Transport Accident Commission (TAC) of Victoria, Geelong, VIC 3220, Australia)

Abstract

The 1990s saw the emergence of the Swedish Vision Zero and the Dutch Sustainable Safety philosophies on road safety. At the time, both were considered somewhat radical and ambitious departures from the status quo. The principles that underpinned both the Dutch and Swedish philosophies were combined into an internationalized form, now known more widely as the Safe System. The Safe System came to attention early in the 2000s, when formally adopted by a number of countries committed to preventing severe road trauma. The Safe System defines a new way of thinking about road safety compared with what had commonly been used around the world in the decades before its conception. The Safe System strives to eliminate death and severe injury from the world’s roads. It also underlines the importance of the safe management of kinetic energy and system-based design that seeks to ensure that crashes are prevented or, at worst, crash forces fall within the threshold of human tolerance to severe injury. Once this thinking is embraced by the system designer, new solutions begin to emerge, and existing designs can be seen in a different, more insightful light. The process of transitioning to the ambitious, ethically based philosophy of the Safe System, as a means of addressing the risks of using our roads, has not happened smoothly or quickly. Practitioners have had difficulty in translating the philosophy and principles of the Safe System into practice. It is hoped that by providing examples of the differences in decisions made under Safe System principles when designing and operating roads, large gains will be made toward the lasting elimination of road trauma. A major focus of the discussion is on the Safe System-aligned design of infrastructure, coupled with vehicle operating speeds, while also recognizing the contributions to risk reduction that can come from improved human performance and the evolving safety features and technologies of modern vehicles.

Suggested Citation

  • Bruce Corben & Sujanie Peiris & Suryaprakash Mishra, 2022. "The Importance of Adopting a Safe System Approach—Translation of Principles into Practical Solutions," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2559-:d:756260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujanie Peiris & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2020. "Road Trauma in Regional and Remote Australia and New Zealand in Preparedness for ADAS Technologies and Autonomous Vehicles," Sustainability, MDPI, vol. 12(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhixue Li & Zhongxiang Huang & Jie Wang, 2022. "Association of Illegal Motorcyclist Behaviors and Injury Severity in Urban Motorcycle Crashes," Sustainability, MDPI, vol. 14(21), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujanie Peiris & Janneke Berecki-Gisolf & Stuart Newstead & Bernard Chen & Brian Fildes, 2021. "Development of a Methodology for Estimating the Availability of ADAS-Dependent Road Infrastructure," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    2. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    3. Matúš Šucha & Ralf Risser & Kristýna Honzíčková, 2021. "Advanced Driver Assistant Systems Focused on Pedestrians’ Safety: A User Experience Approach," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Qian Cheng & Xiaobei Jiang & Haodong Zhang & Wuhong Wang & Chunwen Sun, 2020. "Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    5. Sujanie Peiris & Stuart Newstead & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2022. "Quantifying the Lost Safety Benefits of ADAS Technologies Due to Inadequate Supporting Road Infrastructure," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    6. Jaeheon Choi & Kyuil Lee & Hyunmyung Kim & Sunghi An & Daisik Nam, 2020. "Classification of Inter-Urban Highway Drivers’ Resting Behavior for Advanced Driver-Assistance System Technologies using Vehicle Trajectory Data from Car Navigation Systems," Sustainability, MDPI, vol. 12(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2559-:d:756260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.