IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1296-d732022.html
   My bibliography  Save this article

Soil Organic Carbon in Alley Cropping Systems: A Meta-Analysis

Author

Listed:
  • Vladimir Ivezić

    (Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia)

  • Klaus Lorenz

    (CFAES Rattan Lal Center for Carbon Management and Sequestration (C-MASC), School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Rd., Columbus, OH 43210, USA)

  • Rattan Lal

    (CFAES Rattan Lal Center for Carbon Management and Sequestration (C-MASC), School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Rd., Columbus, OH 43210, USA)

Abstract

Population growth and an increasing demand for food cause the intensification of agriculture leading to soil degradation and a decrease in the soil organic carbon (SOC) stock. Agroforestry systems such as alley cropping are gaining more and more attention as a practice to maintain and/or increase SOC in agroecosystems. The aim of this study was to add to the knowledge on SOC in alley cropping systems and to evaluate the contribution of introducing trees into agricultural landscapes by conducting a meta-analysis of the available data. The soil carbon (C) input will increase with time. Our findings suggest that a beneficial effect on SOC occurs after approximately a decade of alley cropping practice adoption. Furthermore, the effect of alley cropping is more beneficial in regions with lower initial SOC concentration compared to that in regions rich in SOC. Higher relative SOC is observed in the tropical region compared to that in the temperate climate zone. The establishment of alley cropping systems on agricultural land needs to consider several parameters such as alley width and tree species when designing such systems to achieve the highest possible tree and crop productivity while increasing SOC.

Suggested Citation

  • Vladimir Ivezić & Klaus Lorenz & Rattan Lal, 2022. "Soil Organic Carbon in Alley Cropping Systems: A Meta-Analysis," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1296-:d:732022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deep Narayan Pandey, 2002. "Carbon sequestration in agroforestry systems," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 367-377, December.
    2. Louis Verchot & Meine Noordwijk & Serigne Kandji & Tom Tomich & Chin Ong & Alain Albrecht & Jens Mackensen & Cynthia Bantilan & K. Anupama & Cheryl Palm, 2007. "Climate change: linking adaptation and mitigation through agroforestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 901-918, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamilselvan Ilakiya & Ramakrishnan Swarnapriya & Lakshmanan Pugalendhi & Vellingiri Geethalakshmi & Arunachalam Lakshmanan & Manoj Kumar & José M. Lorenzo, 2023. "Carbon Accumulation, Soil Microbial and Enzyme Activities in Elephant Foot Yam-Based Intercropping System," Agriculture, MDPI, vol. 13(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Kasongo Yakusu & Joris Van Acker & Hans Van de Vyver & Nils Bourland & José Mbifo Ndiapo & Théophile Besango Likwela & Michel Lokonda Wa Kipifo & Amand Mbuya Kankolongo & Jan Van den Bulcke &, 2023. "Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin," Climatic Change, Springer, vol. 176(10), pages 1-28, October.
    2. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    3. Thomas A. Tsalis & Ioannis E. Nikolaou, 2017. "Assessing the Effects of Climate Change Regulations on the Business Community: A System Dynamic Approach," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 826-843, September.
    4. Mariana Raposo & Paulo Canaveira & Tiago Domingos, 2025. "Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes," Sustainability, MDPI, vol. 17(3), pages 1-24, February.
    5. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    6. Quandt, A. & Kimathi, Y.A., . "Adapting livelihoods to floods and droughts in arid Kenya: Local perspectives and insights," African Journal of Rural Development (AFJRD), AFrican Journal of Rural Development (AFJRD), vol. 1(01).
    7. Mst. Sohela Afroz & S. M. Kamran Ashraf & Md. Tanbheer Rana & Saleha Khatun Ripta & Sumaiya Binte Rahman Asha & S. M. Sanjida Tasnim Urmi & Kimihiko Hyakumura & Kazi Kamrul Islam, 2025. "Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh," Sustainability, MDPI, vol. 17(8), pages 1-16, April.
    8. Ayalew Ali & Bayelign Abebe, 2024. "Does corporate governance and balance sheet feature influence the financial policy of cooperatives? PLS-SEM approach," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-19, May.
    9. Raúl Córdova & Nicholas J. Hogarth & Markku Kanninen, 2019. "Mountain Farming Systems’ Exposure and Sensitivity to Climate Change and Variability: Agroforestry and Conventional Agriculture Systems Compared in Ecuador’s Indigenous Territory of Kayambi People," Sustainability, MDPI, vol. 11(9), pages 1-30, May.
    10. Unai Pascual & Roberto Martínez-Espiñeira, 2009. "The effect of environmental change and price policies on livelihoods in tropical agroforestry systems," Journal of International Development, John Wiley & Sons, Ltd., vol. 21(3), pages 433-446.
    11. Lenka Soták-Benedeková & Jana Rybárová & Dana Tometzová & Andrea Seňová & Radim Rybár, 2025. "Comprehensive Analysis of Rural Tourism Development: Historical Evolution, Current Trends, and Future Prospects," Sustainability, MDPI, vol. 17(3), pages 1-41, January.
    12. Md. Moshiur Rahman & Tapan Kumar Chakraborty & Abdullah Al Mamun & Victor Kiaya, 2023. "Land- and Water-Based Adaptive Farming Practices to Cope with Waterlogging in Variably Elevated Homesteads," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    13. Mustafa Hakkı Aydoğdu & Mehmet Reşit Sevinç & Mehmet Cançelik & Hatice Parlakçı Doğan & Zeliha Şahin, 2020. "Determination of Farmers’ Willingness to Pay for Sustainable Agricultural Land Use in the GAP-Harran Plain of Turkey," Land, MDPI, vol. 9(8), pages 1-15, August.
    14. Francisco X. Aguilar & Dienda Hendrawan & Zhen Cai & James M. Roshetko & Judith Stallmann, 2022. "Smallholder farmer resilience to water scarcity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2543-2576, February.
    15. Eva Petrová & Tomáš Štofa & Michal Šoltés, 2021. "Exploration of the Factors that Influence the Implementation of Environmental Management Systems—The Case of Slovakia," Economies, MDPI, vol. 9(2), pages 1-14, May.
    16. Meine van Noordwijk & Richard Coe & Fergus L. Sinclair & Eike Luedeling & Jules Bayala & Catherine W. Muthuri & Peter Cooper & Roeland Kindt & Lalisa Duguma & Christine Lamanna & Peter A. Minang, 2021. "Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-33, June.
    17. Rikesh Kumar & Rakesh Kumar & Sambhunath Karmakar & Amit Kumar & Alok Kumar Singh & Abhay Kumar & Jitendra Singh, 2023. "Impact of Amide Fertilizer on Carbon Sequestration under the Agroforestry System in the Eastern Plateau Region of India," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    18. Waldén, Pirjetta & Eronen, Mari & Kaseva, Janne & Negash, Mesele & Kahiluoto, Helena, 2024. "Determinants of the economy in multistrata agroforestry in Ethiopia," Land Use Policy, Elsevier, vol. 141(C).
    19. Tiziana Pagnani & Elisabetta Gotor & Francesco Caracciolo, 2021. "Adaptive strategies enhance smallholders’ livelihood resilience in Bihar, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 419-437, April.
    20. Alcade C. Segnon & Enoch G. Achigan-Dako & Orou G. Gaoue & Adam Ahanchédé, 2015. "Farmer’s Knowledge and Perception of Diversified Farming Systems in Sub-Humid and Semi-Arid Areas in Benin," Sustainability, MDPI, vol. 7(6), pages 1-20, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1296-:d:732022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.