IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16875-d1005108.html
   My bibliography  Save this article

Spatial Variations in Organic Carbon Pools and Their Responses to Different Annual Straw Return Rates in Surface Paddy Soils in South China

Author

Listed:
  • Xiyang Wang

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Liang Li

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Zaijun Xin

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Xiaohui Li

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Shifu He

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Xiaoyan Sun

    (Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Nanchang 330096, China
    Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China)

Abstract

To identify the effects of straw return on different organic carbon pools in surface paddy soils (0–20 cm), a total of 33 soil samples under different annual straw return rates (SRr) was collected, and then the samples were analyzed based on a 100-day incubation. The data from acid hydrolysis-incubation experiments were fitted to a three-pool first-order kinetics model that divided soil organic carbon (SOC) into active (C a ), slow (C s ) and resistant (C r ) pools. The results showed that the mean pool sizes of C a , C s , and C r were 0.27, 10.26, and 13.46 g·kg −1 , representing a mean of 1.35%, 41.91%, and 56.74% of the total SOC (TOC), respectively. The SOC pools in the surface paddy soils in Dongxiang had a small C a pool but had longer mean residence times of the C a and C s pools than those in other regions in China. The three carbon pools were less affected by the paddy soil type but showed obvious spatial variations. The SRr contributed a strong positive effect on the variability of C s and C r , especially on C s variability, while it had very little effect on C a variability. Soil available nitrogen dominated the variability in TOC and C r compared to the other soil properties. Therefore, the C s pool is more sensitive than the other carbon pools to long-term straw return.

Suggested Citation

  • Xiyang Wang & Liang Li & Zaijun Xin & Xiaohui Li & Shifu He & Xiaoyan Sun, 2022. "Spatial Variations in Organic Carbon Pools and Their Responses to Different Annual Straw Return Rates in Surface Paddy Soils in South China," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16875-:d:1005108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiyang Wang & Liang Li & Naijia Guo & Zaijun Xin & Xiaohui Li & Xiaoyan Sun & Ya Li, 2021. "A Comprehensive Exploration on Pollution Characteristics and Ecological Risks of Heavy Metals in Surface Paddy Soils around a Large Copper Smelter, Southeast China," Sustainability, MDPI, vol. 13(23), pages 1-11, December.
    2. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    3. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    4. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    5. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    6. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    7. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    8. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    9. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    10. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    11. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    13. Coletti, Janaine Z. & Hinz, Christoph & Vogwill, Ryan & Hipsey, Matthew R., 2013. "Hydrological controls on carbon metabolism in wetlands," Ecological Modelling, Elsevier, vol. 249(C), pages 3-18.
    14. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    15. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    16. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    17. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    18. Momtahina Hasnat & Mohammad Ashraful Alam & Mariam Khanam & Bushra Islam Binte & Mohammad Humayun Kabir & Mohammad Saiful Alam & Mohammed Zia Uddin Kamal & Golum Kibria Muhammad Mustafizur Rahman & Mo, 2022. "Effect of Nitrogen Fertilizer and Biochar on Organic Matter Mineralization and Carbon Accretion in Soil," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    19. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16875-:d:1005108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.