IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15420-d978394.html
   My bibliography  Save this article

A Method for the Definition of Emergency Rescue Routes Based on the Out-of-Plane Seismic Collapse of Masonry Infills in Reinforced-Concrete-Framed Buildings

Author

Listed:
  • Mauro Francini

    (Laboratory of Interventions Management in Environmental Emergencies Conditions, University of Calabria, Via Pietro Bucci, Cubo 45/B, Arcavacata di Rende, 87036 Rende, Italy)

  • Sara Gaudio

    (Laboratory of Interventions Management in Environmental Emergencies Conditions, University of Calabria, Via Pietro Bucci, Cubo 45/B, Arcavacata di Rende, 87036 Rende, Italy)

  • Carolina Salvo

    (Laboratory of Interventions Management in Environmental Emergencies Conditions, University of Calabria, Via Pietro Bucci, Cubo 45/B, Arcavacata di Rende, 87036 Rende, Italy)

  • Fabio Mazza

    (Department of Civil Engineering, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Rende, Italy)

  • Angelo Donnici

    (Department of Civil Engineering, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Rende, Italy)

Abstract

One of the main goals of disaster management planning is to ensure the effectiveness of the emergency measures when a hazard occurs. This happens only if the decision-makers use operational tools considering the structural characteristics of urban systems. Starting from these assumptions, the authors proposed an emergency management method based on the integrated work between two different scientific sectors, the urban planning and construction engineering sectors. The proposed method aims to evaluate the practicability of the strategic road network, as well as defining the emergency rescue routes based on the out-of-plane (OOP) seismic collapse of masonry infills (MIs) in reinforced concrete (RC)-framed buildings. The OOP failure of MIs is predicted according to an innovative MI macro-model. The authors test the method on a geographic area in the municipality of Gioia Tauro (Reggio Calabria, Italy). The results show that due to the collapse of MIs, the functionality of the strategic road network in emergency conditions can be compromised, causing losses of the urban systems’ performance. Based on the obtained results, the authors recommend that decision-makers use the proposed methodology to identify the vulnerable rescue paths and to locate the strategic infrastructure while spending the financial resources in a more effective way.

Suggested Citation

  • Mauro Francini & Sara Gaudio & Carolina Salvo & Fabio Mazza & Angelo Donnici, 2022. "A Method for the Definition of Emergency Rescue Routes Based on the Out-of-Plane Seismic Collapse of Masonry Infills in Reinforced-Concrete-Framed Buildings," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15420-:d:978394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Thierry & Laurent Stieltjes & Emmanuel Kouokam & Pierre Nguéya & Paul Salley, 2008. "Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 429-456, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Festus Tongwa Aka & Gaston Wung Buh & Wilson Yatoh Fantong & Issa & Isabella Tem Zouh & Serges Laurent Bopda Djomou & Richard Tanwi Ghogomu & Terry Gibson & Mary-Ann Marmol del & Luc Nkamdjou Sigha & , 2017. "Disaster prevention, disaster preparedness and local community resilience within the context of disaster risk management in Cameroon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 57-88, March.
    2. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2012. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 615-639, October.
    3. V. Che & M. Kervyn & G. Ernst & P. Trefois & S. Ayonghe & P. Jacobs & E. Ranst & C. Suh, 2011. "Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and triggering factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 47-74, October.
    4. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2013. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 497-521, January.
    5. Shen, Guoqiang & Zhou, Long & Xue, Xianwu & Zhou, Yu, 2023. "The risk impacts of global natural and technological disasters," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    6. Baoyin Liu & Yim Siu & Gordon Mitchell & Wei Xu, 2013. "Exceedance probability of multiple natural hazards: risk assessment in China’s Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2039-2055, December.
    7. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    8. Jinjia Zhang & Kaili Xu & Greg You & Beibei Wang & Lei Zhao, 2019. "Causation Analysis of Risk Coupling of Gas Explosion Accident in Chinese Underground Coal Mines," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1634-1646, July.
    9. Ariane Wetie Ngongang & Nils Lenhardt & Ansie Smit, 2019. "Seismic hazard parameter estimation of the Mount Cameroon volcanic region (Cameroon) based on a combination of mixed catalogs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 369-388, March.
    10. José Marrero & Alicia García & Angeles Llinares & Servando Cruz-Reyna & Silvia Ramos & Ramón Ortiz, 2013. "Virtual tools for volcanic crisis management, and evacuation decision support: applications to El Chichón volcano (Chiapas, México)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 955-980, September.
    11. Jan Maes & Jeff Mbella Molombe & Kewan Mertens & Constanza Parra & Jean Poesen & Vivian Bih Che & Matthieu Kervyn, 2019. "Socio-political drivers and consequences of landslide and flood risk zonation: A case study of Limbe city, Cameroon," Environment and Planning C, , vol. 37(4), pages 707-731, June.
    12. Mark Carey & Christian Huggel & Jeffrey Bury & César Portocarrero & Wilfried Haeberli, 2012. "An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru," Climatic Change, Springer, vol. 112(3), pages 733-767, June.
    13. Guangyun Gao & Shaofeng Yao & Yujun Cui & Qingsheng Chen & Xianlin Zhang & Kewen Wang, 2018. "Zoning of confined aquifers inrush and quicksand in Shanghai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1341-1363, April.
    14. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    15. Madhurima Ganguly & Rahul Aynyas & Abhishek Nandan & Prasenjit Mondal, 2018. "Hazardous area map: an approach of sustainable urban planning and industrial development—a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1385-1405, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15420-:d:978394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.