IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13506-d947136.html
   My bibliography  Save this article

An Integrated Seamless Control Strategy for Distributed Generators Based on a Deep Learning Artificial Neural Network

Author

Listed:
  • Ahmed H. EL-Ebiary

    (Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mahmoud A. Attia

    (Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mostafa I. Marei

    (Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mariam A. Sameh

    (Electric Power Engineering Department, Faculty of Engineering, Future University in Egypt (FUE), New Cairo 11835, Egypt)

Abstract

One of the challenges of inverter-based distributed generators (DGs) is to keep the voltage and frequency at their specified limits during transitions between grid-connected and islanded modes of operation. This paper presents an integrated seamless control strategy for inverter-based DGs to ensure smooth transitions between the different modes of operation. The proposed strategy is based on a deep learning neural network (DL-ANN) Proportional-Integral- Derivative (PID) controller to regulate the terminal voltage of the DG interface system. A feed-forward loop is integrated with the proposed strategy to mitigate grid harmonics by controlling the DG inverter to feed the harmonics components of non-linear loads without exceeding its capacity. Results are provided to evaluate the dynamic performance of the proposed unified control strategy under different disturbances. Finally, to demonstrate the superiority of the DL-ANN controller, a comparison is carried out with the conventional Proportional-Integral (PI) controller and the set-membership affine projection adaptive (SMAPA)-based PI controller.

Suggested Citation

  • Ahmed H. EL-Ebiary & Mahmoud A. Attia & Mostafa I. Marei & Mariam A. Sameh, 2022. "An Integrated Seamless Control Strategy for Distributed Generators Based on a Deep Learning Artificial Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13506-:d:947136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    2. Jiarui Wang & Dexin Li & Xiangyu Lv & Xiangdong Meng & Jiajun Zhang & Tengfei Ma & Wei Pei & Hao Xiao, 2022. "Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization," Energies, MDPI, vol. 15(8), pages 1-18, April.
    3. Jayachandran Jayaram & Malathi Srinivasan & Natarajan Prabaharan & Tomonobu Senjyu, 2022. "Design of Decentralized Hybrid Microgrid Integrating Multiple Renewable Energy Sources with Power Quality Improvement," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed H. EL-Ebiary & Mohamed Mokhtar & Atef M. Mansour & Fathy H. Awad & Mostafa I. Marei & Mahmoud A. Attia, 2022. "Distributed Mitigation Layers for Voltages and Currents Cyber-Attacks on DC Microgrids Interfacing Converters," Energies, MDPI, vol. 15(24), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    2. Yukun Xu & Xiangyong Kong & Zheng Zhu & Chao Jiang & Shuang Xiao, 2022. "Recovery Algorithm of Power Metering Data Based on Collaborative Fitting," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    4. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    5. Igor Kabashkin, 2023. "End-to-End Service Availability in Heterogeneous Multi-Tier Cloud–Fog–Edge Networks," Future Internet, MDPI, vol. 15(10), pages 1-23, October.
    6. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    7. Cheng Qian & Xing Liu & Colin Ripley & Mian Qian & Fan Liang & Wei Yu, 2022. "Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions," Future Internet, MDPI, vol. 14(2), pages 1-25, February.
    8. José María Portalo & Isaías González & Antonio José Calderón, 2021. "Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    9. Leijiao Ge & Jun Yan & Yonghui Sun & Zhongguan Wang, 2022. "Situational Awareness for Smart Distribution Systems," Energies, MDPI, vol. 15(11), pages 1-3, June.
    10. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    11. Arkadiusz Dobrzycki & Jacek Roman, 2022. "Correlation between the Production of Electricity by Offshore Wind Farms and the Demand for Electricity in Polish Conditions," Energies, MDPI, vol. 15(10), pages 1-18, May.
    12. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    13. Fan, Xinyuan & Zhang, Weige & Sun, Bingxiang & Zhang, Junwei & He, Xitian, 2022. "Battery pack consistency modeling based on generative adversarial networks," Energy, Elsevier, vol. 239(PE).
    14. Sabrina Yeasmin & Tushar Kanti Roy & Subarto Kumar Ghosh, 2022. "Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    15. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2021. "Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management," Energies, MDPI, vol. 14(18), pages 1-31, September.
    16. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    17. Loup-Noé Lévy & Jérémie Bosom & Guillaume Guerard & Soufian Ben Amor & Marc Bui & Hai Tran, 2022. "DevOps Model Appproach for Monitoring Smart Energy Systems," Energies, MDPI, vol. 15(15), pages 1-27, July.
    18. Alessandro Burgio & Domenico Cimmino & Andrea Nappo & Luigi Smarrazzo & Giuseppe Donatiello, 2023. "An IoT-Based Solution for Monitoring and Controlling Battery Energy Storage Systems at Residential and Commercial Levels," Energies, MDPI, vol. 16(7), pages 1-21, March.
    19. Maysam Abbasi & Ehsan Abbasi & Li Li & Ricardo P. Aguilera & Dylan Lu & Fei Wang, 2023. "Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods," Energies, MDPI, vol. 16(1), pages 1-36, January.
    20. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan & Cyril Sunday Ume, 2021. "Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review," Energies, MDPI, vol. 14(20), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13506-:d:947136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.