IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11567-d915889.html
   My bibliography  Save this article

Image Recognition-Based Architecture to Enhance Inclusive Mobility of Visually Impaired People in Smart and Urban Environments

Author

Listed:
  • Sara Paiva

    (ADiT-LAB, Instituto Politécnico de Viana do Castelo, 4900-367 Viana do Castelo, Portugal)

  • António Amaral

    (Departmento de Engenharia Mecânica, ISEP Politécnico do Porto, 4249-015 Porto, Portugal
    INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal)

  • Joana Gonçalves

    (ADiT-LAB, Instituto Politécnico de Viana do Castelo, 4900-367 Viana do Castelo, Portugal)

  • Rui Lima

    (ADiT-LAB, Instituto Politécnico de Viana do Castelo, 4900-367 Viana do Castelo, Portugal)

  • Luis Barreto

    (ADiT-LAB, Instituto Politécnico de Viana do Castelo, 4900-367 Viana do Castelo, Portugal)

Abstract

The demographic growth that we have witnessed in recent years, which is expected to increase in the years to come, raises emerging challenges worldwide regarding urban mobility, both in transport and pedestrian movement. The sustainable development of cities is also intrinsically linked to urban planning and mobility strategies. The tasks of navigation and orientation in cities are something that we resort to today with great frequency, especially in unknown cities and places. Current navigation solutions refer to the precision aspect as a big challenge, especially between buildings in city centers. In this paper, we focus on the segment of visually impaired people and how they can obtain information about where they are when, for some reason, they have lost their orientation. Of course, the challenges are different and much more challenging in this situation and with this population segment. GPS, a technique widely used for navigation in outdoor environments, does not have the precision we need or the most beneficial type of content because the information that a visually impaired person needs when lost is not the name of the street or the coordinates but a reference point. Therefore, this paper includes the proposal of a conceptual architecture for outdoor positioning of visually impaired people using the Landmark Positioning approach.

Suggested Citation

  • Sara Paiva & António Amaral & Joana Gonçalves & Rui Lima & Luis Barreto, 2022. "Image Recognition-Based Architecture to Enhance Inclusive Mobility of Visually Impaired People in Smart and Urban Environments," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11567-:d:915889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbasi, Sorath & Ko, Joonho & Min, Jaehong, 2021. "Measuring destination-based segregation through mobility patterns: Application of transport card data," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Groth, Sören, 2019. "Multimodal divide: Reproduction of transport poverty in smart mobility trends," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 56-71.
    3. Mark Muller & Seri Park & Ross Lee & Brett Fusco & Gonçalo Homem de Almeida Correia, 2021. "Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan, Jean & Pereira, Rafael H.M. & Andersson, Magnus, 2023. "Accessibility and space-time differences in when and how different groups (choose to) travel," Journal of Transport Geography, Elsevier, vol. 111(C).
    2. Davide Maria Bruno & Guido Musante & Fabio Dacarro, 2022. "Smart Trams : A Design Proposal for a City of Interrelation," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    3. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    4. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    5. Cohen-Blankshtain, Galit, 2021. "On another track: Differing views of experts and politicians on rail investments in peripheral localities," Journal of Transport Geography, Elsevier, vol. 95(C).
    6. Fu, Xingxing & van Lierop, Dea & Ettema, Dick, 2024. "Is multimodality advantageous? Assessing the relationship between multimodality and perceived transport adequacy and accessibility in different travel contexts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    7. Jaroslav Mašek & Vladimíra Štefancová & Jaroslav Mazanec & Petra Juránková, 2023. "The Classification of Application Users Supporting and Facilitating Travel Mobility Using Two-Step Cluster Analysis," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
    8. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    9. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    10. Kolkowski, Lukas & Cats, Oded & Dixit, Malvika & Verma, Trivik & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak Jarlebring, 2023. "Measuring activity-based social segregation using public transport smart card data," Journal of Transport Geography, Elsevier, vol. 110(C).
    11. Douglas Mitieka & Rose Luke & Hossana Twinomurinzi & Joash Mageto, 2023. "Smart Mobility in Urban Areas: A Bibliometric Review and Research Agenda," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    13. Zijlstra, Toon & Durand, Anne & Hoogendoorn-Lanser, Sascha & Harms, Lucas, 2020. "Early adopters of Mobility-as-a-Service in the Netherlands," Transport Policy, Elsevier, vol. 97(C), pages 197-209.
    14. Jean Ryan, 2020. "Examining the Process of Modal Choice for Everyday Travel Among Older People," IJERPH, MDPI, vol. 17(3), pages 1-19, January.
    15. Manuel Rey-Moreno & Rafael Periáñez-Cristóbal & Arturo Calvo-Mora, 2022. "Reflections on Sustainable Urban Mobility, Mobility as a Service (MaaS) and Adoption Models," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    16. Wojciech Keblowski & Frédéric Dobruszkes & Kobe Boussauw, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," ULB Institutional Repository 2013/341191, ULB -- Universite Libre de Bruxelles.
    17. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    18. Konstantina Anastasiadou & Nikolaos Gavanas & Christos Pyrgidis & Magda Pitsiava-Latinopoulou, 2021. "Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    19. Sakari Höysniemi & Arto O. Salonen, 2019. "Towards Carbon-Neutral Mobility in Finland: Mobility and Life Satisfaction in Day-to-Day Life," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    20. Zhang, Mengzhu & Zhao, Pengjun & Qiao, Si, 2020. "Smartness-induced transport inequality: Privacy concern, lacking knowledge of smartphone use and unequal access to transport information," Transport Policy, Elsevier, vol. 99(C), pages 175-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11567-:d:915889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.