IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10895-d903333.html
   My bibliography  Save this article

Land-Use-Based Runoff Yield Method to Modify Hydrological Model for Flood Management: A Case in the Basin of Simple Underlying Surface

Author

Listed:
  • Chaowei Xu

    (College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China)

  • Hao Fu

    (College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China)

  • Jiashuai Yang

    (College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China)

  • Lingyue Wang

    (College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China)

  • Yizhen Wang

    (College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China)

Abstract

The study of runoff under the influence of human activities is a research hot spot in the field of water science. Land-use change is one of the main forms of human activities and it is also the major driver of changes to the runoff process. As for the relationship between land use and the runoff process, runoff yield theories pointed out that the runoff yield capacity is spatially heterogeneous. The present work hypothesizes that the distribution of the runoff yield can be divided by land use, which is, areas with the same land-use type are similar in runoff yield, while areas of different land uses are significantly different. To prove it, we proposed a land-use-based framework for runoff yield calculations based on a conceptual rainfall–runoff model, the Xin’anjiang (XAJ) model. Based on the framework, the modified land-use-based Xin’anjiang (L-XAJ) model was constructed by replacing the yielding area (f/F) in the water storage capacity curve of the XAJ model with the area ratio of different land-use types (L/F; L is the area of specific land-use types, F is the whole basin area). The L-XAJ model was then applied to the typical cultivated–urban binary land-use-type basin (Taipingchi basin) to evaluate its performance. Results showed great success of the L-XAJ model, which demonstrated the area ratio of different land-use types can represent the corresponding yielding area in the XAJ model. The L-XAJ model enhanced the physical meaning of the runoff generation in the XAJ model and was expected to be used in the sustainable development of basin water resources.

Suggested Citation

  • Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang & Yizhen Wang, 2022. "Land-Use-Based Runoff Yield Method to Modify Hydrological Model for Flood Management: A Case in the Basin of Simple Underlying Surface," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10895-:d:903333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fazhi Li & Jingqiu Chen & Yaoze Liu & Peng Xu & Hua Sun & Bernard A. Engel & Shizhong Wang, 2019. "Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China," Sustainability, MDPI, vol. 11(13), pages 1-19, June.
    2. Junfu Gong & Cheng Yao & Zhijia Li & Yuanfang Chen & Yingchun Huang & Bingxing Tong, 2021. "Improving the flood forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2077-2109, April.
    3. Ike Sari Astuti & Kamalakanta Sahoo & Adam Milewski & Deepak R. Mishra, 2019. "Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4087-4103, September.
    4. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    5. Xingyang Yu & Xingyuan He & Haifeng Zheng & Ruichao Guo & Zhibin Ren & Dan Zhang & Jixiang Lin, 2014. "Spatial and temporal analysis of drought risk during the crop-growing season over northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 275-289, March.
    6. Karen S. Meijer & Femke Schasfoort & Maike Bennema, 2021. "Quantitative Modeling of Human Responses to Changes in Water Resources Availability: A Review of Methods and Theories," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    7. Feng Huang & Yude Zhang & Danrong Zhang & Xi Chen, 2019. "Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review," IJERPH, MDPI, vol. 16(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyu Li & Yangbo Chen & Yanzheng Zhu & Jun Liu, 2023. "Study of Flood Simulation in Small and Medium-Sized Basins Based on the Liuxihe Model," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    2. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    2. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    3. Feng Huang & Danrong Zhang & Xi Chen, 2019. "Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
    4. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    5. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    6. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    7. Ankur Srivastava & Proloy Deb & Nikul Kumari, 2020. "Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 327-341, January.
    8. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Piyush Dahal & Nicky Shree Shrestha & Madan Lall Shrestha & Nir Y. Krakauer & Jeeban Panthi & Soni M. Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    10. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    11. Fabio Recanatesi & Andrea Petroselli, 2020. "Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4399-4413, November.
    12. Weiting Shan & Chunliang Xiu & Rui Ji, 2020. "Creating a Healthy Environment for Elderly People in Urban Public Activity Space," IJERPH, MDPI, vol. 17(19), pages 1-18, October.
    13. Budi Hadi Narendra & Chairil Anwar Siregar & I Wayan Susi Dharmawan & Asep Sukmana & Pratiwi & Irfan Budi Pramono & Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Agung Budi Supangat & Purw, 2021. "A Review on Sustainability of Watershed Management in Indonesia," Sustainability, MDPI, vol. 13(19), pages 1-29, October.
    14. Zhiwei Wan & Xi Chen & Min Ju & Chaohao Ling & Guangxu Liu & Siping Lin & Huihua Liu & Yulian Jia & Meixin Jiang & Fuqiang Liao, 2020. "Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    15. Onyango Dancan O. & Ikporukpo Christopher O. & Taiwo John O. & Opiyo Stephen B., 2021. "Monitoring the extent and impacts of watershed urban development in the Lake Victoria Basin, Kenya, using a combination of population dynamics, remote sensing and GIS techniques," Environmental & Socio-economic Studies, Sciendo, vol. 9(2), pages 11-25, June.
    16. Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.
    17. Tao Tao & Du Wang & Ganping Huang & Liqing Lin & Chenhao Wu & Qixin Xu & Jun Zhao & Guangren Qian, 2023. "Assessing the Long-Term Hydrological Effects of Rapid Urbanization in Metropolitan Shanghai, China: The Finer the Landscape Classification, the More Accurate the Modeling?," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    18. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    19. Sugianto Sugianto & Anwar Deli & Edy Miswar & Muhammad Rusdi & Muhammad Irham, 2022. "The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya," Land, MDPI, vol. 11(8), pages 1-18, August.
    20. N. M. Sabitha & Santosh G. Thampi & D. Sathish Kumar, 2023. "Application of a Distributed Hydrologic Model to Assess the Impact of Climate and Land-use Change on Surface Runoff from a Small Urbanizing Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2347-2368, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10895-:d:903333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.