IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9039-d869889.html
   My bibliography  Save this article

In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data

Author

Listed:
  • Luís Guilherme Teixeira Crusiol

    (Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture—Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Embrapa Soja (National Soybean Research Center—Brazilian Agricultural Research Corporation), Londrina 86001-970, PR, Brazil)

  • Liang Sun

    (Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture—Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Zheng Sun

    (Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture—Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Ruiqing Chen

    (Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture—Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yongfeng Wu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Juncheng Ma

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Chenxi Song

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

China is one the largest maize ( Zea mays L.) producer worldwide. Considering water deficit as one of the most important limiting factors for crop yield stability, remote sensing technology has been successfully used to monitor water relations in the soil–plant–atmosphere system through canopy and leaf reflectance, contributing to the better management of water under precision agriculture practices and the quantification of dynamic traits. This research was aimed to evaluate the relation between maize leaf water content (LWC) and ground-based and unoccupied aerial vehicle (UAV)-based hyperspectral data using the following approaches: (I) single wavelengths, (II) broadband reflectance and vegetation indices, (III) optimum hyperspectral vegetation indices (HVIs), and (IV) partial least squares regression (PLSR). A field experiment was undertaken at the Chinese Academy of Agricultural Sciences, Beijing, China, during the 2020 cropping season following a split plot model in a randomized complete block design with three blocks. Three maize varieties were subjected to three differential irrigation schedules. Leaf-based reflectance (400–2500 nm) was measured with a FieldSpec 4 spectroradiometer, and canopy-based reflectance (400–1000 nm) was collected with a Pika-L hyperspectral camera mounted on a UAV at three assessment days. Both sensors demonstrated similar shapes in the spectral response from the leaves and canopy, with differences in reflectance intensity across near-infrared wavelengths. Ground-based hyperspectral data outperformed UAV-based data for LWC monitoring, especially when using the full spectra (Vis–NIR–SWIR). The HVI and the PLSR models were demonstrated to be more suitable for LWC monitoring, with a higher HVI accuracy. The optimal band combinations for HVI were centered between 628 and 824 nm (R 2 from 0.28 to 0.49) using the UAV-based sensor and were consistently located around 1431–1464 nm and 2115–2331 nm (R 2 from 0.59 to 0.80) using the ground-based sensor on the three assessment days. The obtained results indicate the potential for the complementary use of ground-based and UAV-based hyperspectral data for maize LWC monitoring.

Suggested Citation

  • Luís Guilherme Teixeira Crusiol & Liang Sun & Zheng Sun & Ruiqing Chen & Yongfeng Wu & Juncheng Ma & Chenxi Song, 2022. "In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9039-:d:869889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Libing Song & Jiming Jin & Jianqiang He, 2019. "Effects of Severe Water Stress on Maize Growth Processes in the Field," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    2. El-Hendawy, Salah E. & Al-Suhaibani, Nasser A. & Elsayed, Salah & Hassan, Wael M. & Dewir, Yaser Hassan & Refay, Yahya & Abdella, Kamel A., 2019. "Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates," Agricultural Water Management, Elsevier, vol. 217(C), pages 356-373.
    3. József Csajbók & Erika Buday-Bódi & Attila Nagy & Zsolt Zoltán Fehér & András Tamás & István Csaba Virág & Csaba Bojtor & Fanni Forgács & Attila Miklós Vad & Erika Kutasy, 2022. "Multispectral Analysis of Small Plots Based on Field and Remote Sensing Surveys—A Comparative Evaluation," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    4. Blagoja Boshkovski & Georgios Doupis & Anhelina Zapolska & Chariton Kalaitzidis & Georgios Koubouris, 2022. "Hyperspectral Imagery Detects Water Deficit and Salinity Effects on Photosynthesis and Antioxidant Enzyme Activity of Three Greek Olive Varieties," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonela Mndela & Naledzani Ndou & Adolph Nyamugama, 2023. "Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery," Sustainability, MDPI, vol. 15(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radovan Begović & Milica Dudić & Maja Meseldžija & Milica Vranešević & Aleksandar Jurišić, 2023. "Rationalizing Herbicide Use in Maize within the Framework of Climatic Change and Extreme Hydrometeorological Phenomena," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    2. Adel H. Elmetwalli & Yasser S. A. Mazrou & Andrew N. Tyler & Peter D. Hunter & Osama Elsherbiny & Zaher Mundher Yaseen & Salah Elsayed, 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    3. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    4. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Raïfatou Affoh & Haixia Zheng & Xuebiao Zhang & Wen Yu & Chunhong Qu, 2022. "Influences of Meteorological Factors on Maize and Sorghum Yield in Togo, West Africa," Land, MDPI, vol. 12(1), pages 1-24, December.
    6. Li Zhao & Wanjing Li & Guang Yang & Ke Yan & Xinlin He & Fadong Li & Yongli Gao & Lijun Tian, 2021. "Moisture, Temperature, and Salinity of a Typical Desert Plant ( Haloxylon ammodendron ) in an Arid Oasis of Northwest China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    7. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Peng, Zhigong & Lin, Shaozhe & Zhang, Baozhong & Wei, Zheng & Liu, Lu & Han, Nana & Cai, Jiabing & Chen, He, 2020. "Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Xingyang Song & Guangsheng Zhou & Qijin He, 2021. "Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    10. Elmetwalli, Adel H. & Tyler, Andrew N., 2020. "Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground – Based remotely sensed data," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Aimé Sévérin Kima & Etienne Kima & Bernard Bacyé & Paule A. W. Ouédraogo & Ousmane Traore & Seydou Traore & Hervé Nandkangré & Wen-Guey Chung & Yu-Min Wang, 2020. "Evaluating Supplementary Water Methodology with Saturated Soil Irrigation for Yield and Water Productivity Improvement in Semi-Arid Rainfed Rice System, Burkina Faso," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    12. Pompilica Iagăru & Pompiliu Pavel & Romulus Iagăru & Anca Șipoș, 2022. "Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    13. Shaeden Gokool & Maqsooda Mahomed & Richard Kunz & Alistair Clulow & Mbulisi Sibanda & Vivek Naiken & Kershani Chetty & Tafadzwanashe Mabhaudhi, 2023. "Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    14. Crusiol, Luís Guilherme Teixeira & Nanni, Marcos Rafael & Furlanetto, Renato Herrig & Sibaldelli, Rubson Natal Ribeiro & Sun, Liang & Gonçalves, Sergio Luiz & Foloni, José Salvador Simonetto & Mertz-H, 2023. "Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Subramanian Radhesh Krishnan & Pandiyan Muthuramalingam & Arumugam Mohana Priya & Mani Iyer Prasanth & Krishnasamy Gopinath & Chakravarthi Mohan & Karthikeyan Muthusamy & Krishnaswamy Balamurugan & Ad, 2022. "Expressing OsiSAP8 , a Zinc-Finger Associated Protein Gene, Mitigates Stress Dynamics in Existing Elite Rice Varieties of the ‘Green Revolution’," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    16. Kumar, Hemendra & Srivastava, Puneet & Lamba, Jasmeet & Diamantopoulos, Efstathios & Ortiz, Brenda & Morata, Guilherme & Takhellambam, Bijoychandra & Bondesan, Luca, 2022. "Site-specific irrigation scheduling using one-layer soil hydraulic properties and inverse modeling," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Hong Li & Wunian Yang & Junjie Lei & Jinxing She & Xiangshan Zhou, 2021. "Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    18. Mohamed Abbas & Hashim Abdel-Lattif & Mohamed Shahba, 2021. "Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize ( Zea mays L.) Cultivars under Drought Stress," Agriculture, MDPI, vol. 11(4), pages 1-13, March.
    19. Henderson Castelo Sousa & Geocleber Gomes de Sousa & Thales Vinícius de Araújo Viana & Arthur Prudêncio de Araújo Pereira & Carla Ingryd Nojosa Lessa & Maria Vanessa Pires de Souza & José Marcelo da S, 2023. "Bacillus aryabhattai Mitigates the Effects of Salt and Water Stress on the Agronomic Performance of Maize under an Agroecological System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    20. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Guo, Jinjin & Lu, Junsheng & Wu, Lifeng & Qiang, Shengcai & Xiang, Youzhen, 2022. "Source-sink relationship and yield stability of two maize cultivars in response to water and fertilizer inputs in northwest China," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9039-:d:869889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.