IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p8998-d869039.html
   My bibliography  Save this article

Optimization Models of Actuated Control Considering Vehicle Queuing for Sustainable Operation

Author

Listed:
  • Xinyue Wang

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Xianyu Wu

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Jiarui Liu

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China)

Abstract

How to sustainably conduct intersection operations is a key issue of the current research. For an actuated control intersection, queued vehicles, control parameters, and phase schemes all affect the operation effect. This paper discusses queued vehicles at actuated intersections and their influence on signal timing. First, this paper establishes an improved traffic wave model and proposes a vehicle queuing model on this basis. Second, by analyzing the queuing and dispersion process of queued vehicles, a minimal green time calculation model is proposed. Then, this paper establishes a maximal green time calculation model aiming at minimizing average vehicle delay and maximizing traffic capacity under different phase schemes, and considers the influence of queued vehicles. Lastly, the models are verified separately; results show that the average error of the minimal green time model was 4.18%, and the average optimization rate of the maximal green time model was 9.27%. It is proved that the models achieved great accuracy and optimization effects, which could potentially improve intersection sustainability.

Suggested Citation

  • Xinyue Wang & Xianyu Wu & Jiarui Liu, 2022. "Optimization Models of Actuated Control Considering Vehicle Queuing for Sustainable Operation," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:8998-:d:869039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/8998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/8998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    2. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    3. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    4. Zhang, H. M., 1999. "Analyses of the stability and wave properties of a new continuum traffic theory," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 399-415, August.
    5. Ranju Mohan & Gitakrishnan Ramadurai, 2015. "Submission to the DTA2012 Special Issue: A Case for Higher-Order Traffic Flow Models in DTA," Networks and Spatial Economics, Springer, vol. 15(3), pages 765-790, September.
    6. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    7. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    8. Zhang, H. M., 2003. "On the consistency of a class of traffic flow models," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 101-105, January.
    9. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    10. Zhang, H. M., 2000. "Structural properties of solutions arising from a nonequilibrium traffic flow theory," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 583-603, September.
    11. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    12. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    13. Piotr Gołębiowski & Jolanta Żak & Ilona Jacyna-Gołda, 2020. "Approach to the Proecological Distribution of the Traffic Flow on the Transport Network from the Point of View of Carbon Dioxide," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    14. W.-L. Jin & H. M. Zhang, 2003. "The Inhomogeneous Kinematic Wave Traffic Flow Model as a Resonant Nonlinear System," Transportation Science, INFORMS, vol. 37(3), pages 294-311, August.
    15. Yi, Jingang & Lin, Hao & Alvarez, Luis & Horowitz, Roberto, 2003. "Stability of macroscopic traffic flow modeling through wavefront expansion," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 661-679, August.
    16. Qiao, Dianliang & Lin, Zhiyang & Guo, Mingmin & Yang, Xiaoxia & Li, Xiaoyang & Zhang, Peng & Zhang, Xiaoning, 2022. "Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    17. Zhao, Yongxiang & Zhang, H.M., 2017. "A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 315-327.
    18. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    19. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    20. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:8998-:d:869039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.