IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8292-d857160.html
   My bibliography  Save this article

Mould-Growth Study in Building Materials Exposed to Warm and Humid Climate Using Heat and Mass Transfer (HAMT) EnergyPlus Simulation Method

Author

Listed:
  • Shoumik Desai

    (NITTE Institute of Architecture, Mangalore (NITTE DU), Mangaluru 575018, Karnataka, India)

  • Naga Venkata Sai Kumar Manapragada

    (Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India)

  • Anoop Kumar Shukla

    (Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India)

  • Gloria Pignatta

    (School of Built Environment, Faculty of Arts, Design and Architecture, University of New South Wales (UNSW), Sydney, NSW 2052, Australia)

Abstract

Commercial energy consumption currently accounts for 8.6% of the total national energy consumption in India and it is predicted to surge in upcoming years. To tackle this issue, building envelope insulation is being promoted through codes and standards to reduce the cooling and heating demand and hence reduce the overall energy demand. However, with prolonged exposure to humid ambient conditions in warm-humid locations, building materials undergo decay in their hygrothermal properties, which induces mould growth and increases the energy that is needed to tackle the latent cooling load. Mould growth, in turn, harms the occupant and building health. Therefore, this study attempts to evaluate the mould-growth index (MGI) in the coastal city of Mangalore, Karnataka, India using the heat and mass transfer (HAMT) model. The MGI for one autoclaved aerated concrete (AAC) wall assembly in a representative commercial building has been studied by integrating EnergyPlus through the Python plugin. The simulated results suggest that the annual mean MGI for the AAC assembly is 3.5 and that mould growth will cover about 30–70% of the surface area. Furthermore, it was concluded that surface temperature, surface humidity, and solar radiation are key parameters for mould growth on the surface of a material.

Suggested Citation

  • Shoumik Desai & Naga Venkata Sai Kumar Manapragada & Anoop Kumar Shukla & Gloria Pignatta, 2022. "Mould-Growth Study in Building Materials Exposed to Warm and Humid Climate Using Heat and Mass Transfer (HAMT) EnergyPlus Simulation Method," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8292-:d:857160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    2. Diana D’Agostino & Roberto Landolfi & Maurizio Nicolella & Francesco Minichiello, 2022. "Experimental Study on the Performance Decay of Thermal Insulation and Related Influence on Heating Energy Consumption in Buildings," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    2. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    3. Gireesh Nair & Leo Verde & Thomas Olofsson, 2022. "A Review on Technical Challenges and Possibilities on Energy Efficient Retrofit Measures in Heritage Buildings," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    5. Alaina Kinol & Elijah Miller & Hannah Axtell & Ilana Hirschfeld & Sophie Leggett & Yutong Si & Jennie C. Stephens, 2023. "Climate justice in higher education: a proposed paradigm shift towards a transformative role for colleges and universities," Climatic Change, Springer, vol. 176(2), pages 1-29, February.
    6. Ahmadreza Shirvani Dastgerdi & Reza Kheyroddin, 2023. "Building Resilience in Cultural Landscapes: Exploring the Role of Transdisciplinary and Participatory Planning in the Recovery of the Shushtar Historical Hydraulic System," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    7. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    8. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    9. Luay Jaf & Harith H. Al-Moameri & Ahmed A. Ayash & Arnold A. Lubguban & Roberto M. Malaluan & Tushar Ghosh, 2023. "Limits of Performance of Polyurethane Blowing Agents," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    10. Mamdooh Alwetaishi & Ashraf Balabel & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Amal Shamseldin & Mohammed Al-Surf & Mosleh Al-Harthi & Mohamed Gadi, 2020. "User Thermal Comfort in Historic Buildings: Evaluation of the Potential of Thermal Mass, Orientation, Evaporative Cooling and Ventilation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    11. Elena Cantatore & Fabio Fatiguso, 2021. "An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    12. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Impact of Degradation on a Building’s Energy Performance in Hot-Humid Climates," Sustainability, MDPI, vol. 15(2), pages 1-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8292-:d:857160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.