IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p42-d707762.html
   My bibliography  Save this article

Factors Influencing the Intrinsic Seismic Risk of Open Spaces in Existing Built Environments: A Systematic Review

Author

Listed:
  • Martina Russo

    (Department of Civil, Building and Environmental Engineering (DICEA), Sapienza Università di Roma, 00184 Rome, Italy)

  • Marco Angelosanti

    (Department of Civil, Building and Environmental Engineering (DICEA), Sapienza Università di Roma, 00184 Rome, Italy)

  • Gabriele Bernardini

    (Department of Construction, Civil Engineering and Architecture (DICEA), Università Politecnica delle Marche, 60121 Ancona, Italy)

  • Laura Severi

    (Department of Civil, Building and Environmental Engineering (DICEA), Sapienza Università di Roma, 00184 Rome, Italy)

  • Enrico Quagliarini

    (Department of Construction, Civil Engineering and Architecture (DICEA), Università Politecnica delle Marche, 60121 Ancona, Italy)

  • Edoardo Currà

    (Department of Civil, Building and Environmental Engineering (DICEA), Sapienza Università di Roma, 00184 Rome, Italy)

Abstract

Open spaces (OSs), such as streets, squares, and green areas, in existing built environments (BEs) are key places in disaster risk management. The seismic risk in the OSs is strictly related to BE characteristics. Scientific literature mainly focuses on extrinsic factors affecting risk, which are related to BE elements on the OSs frontier (e.g., buildings) that could cause indirect effects on the OSs. Conversely, just a few risk assessment studies consider intrinsic factors, which are related to OS elements that could suffer direct effects. Moreover, synoptic studies on such factors are still missing. Through literature-based research, the paper identifies specific factors influencing seismic risk in the OSs, focusing notably on intrinsic vulnerability. The literature review methodology includes both a systematic review from Scopus databases and a traditional bibliographic search using snowball analysis. According to the final selected papers, risk factors are classified into five categories of OS characteristics: morpho-typology; physical; construction; use and users; and context. Statistical analysis of the categories’ recurrence in the final papers firstly allows current literature gaps to be defined. The results also provide a preliminary OSs risk index weighting each category in terms of such recurrences, thus representing a first useful step to support non-expert stakeholders in a preliminary assessment of priorities to define the seismic risk of Oss.

Suggested Citation

  • Martina Russo & Marco Angelosanti & Gabriele Bernardini & Laura Severi & Enrico Quagliarini & Edoardo Currà, 2021. "Factors Influencing the Intrinsic Seismic Risk of Open Spaces in Existing Built Environments: A Systematic Review," Sustainability, MDPI, vol. 14(1), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:42-:d:707762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Penny Allan & Martin Bryant & Camila Wirsching & Daniela Garcia & Maria Teresa Rodriguez, 2013. "The Influence of Urban Morphology on the Resilience of Cities Following an Earthquake," Journal of Urban Design, Taylor & Francis Journals, vol. 18(2), pages 242-262, May.
    2. David Koren & Katarina Rus, 2019. "The Potential of Open Space for Enhancing Urban Seismic Resilience: A literature Review," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin Junjia & Aidi Hizami Alias & Nuzul Azam Haron & Nabilah Abu Bakar, 2023. "A Bibliometric Review on Safety Risk Assessment of Construction Based on CiteSpace Software and WoS Database," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Alawi & Dongzhu Chu & Seba Hammad, 2023. "Resilience of Public Open Spaces to Earthquakes: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    2. Jorge León & Alan March, 2016. "An urban form response to disaster vulnerability: Improving tsunami evacuation in Iquique, Chile," Environment and Planning B, , vol. 43(5), pages 826-847, September.
    3. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    4. Berfin Şenik & Osman Uzun, 2021. "An assessment on size and site selection of emergency assembly points and temporary shelter areas in Düzce," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1587-1602, January.
    5. Jin Rui & Frank Othengrafen, 2023. "Examining the Role of Innovative Streets in Enhancing Urban Mobility and Livability for Sustainable Urban Transition: A Review," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    6. Castro, Kássia Batista de & Roig, Henrique Llacer & Neumann, Marina Rolim Bilich & Rossi, Maria Silvia & Seraphim, Ana Paula Albuquerque Campos Castalonga & Réquia, Weeberb João & Costa, Alexandre Bar, 2019. "New perspectives in land use mapping based on urban morphology: A case study of the Federal District, Brazil," Land Use Policy, Elsevier, vol. 87(C).
    7. Abdullah Addas & Ahmad Maghrabi & Ran Goldblatt, 2021. "Public Open Spaces Evaluation Using Importance-Performance Analysis (IPA) in Saudi Universities: The Case of King Abdulaziz University, Jeddah," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    8. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2021. "Integrated methods to determine urban physical resilience characteristics and their interactions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 725-754, October.
    9. Magdalena Vicuña & Jorge León & Simón Guzmán, 2022. "Urban form planning and tsunami risk vulnerability: Analysis of 12 Chilean coastal cities," Environment and Planning B, , vol. 49(7), pages 1967-1979, September.
    10. Jinsong Gan & Peizhen Li & Qiang Liu, 2019. "Study on Dynamic Structure-Soil-Structure Interaction of Three Adjacent Tall Buildings Subjected to Seismic Loading," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    11. Aline Pires Veról & Ianic Bigate Lourenço & João Paulo Rebechi Fraga & Bruna Peres Battemarco & Mylenna Linares Merlo & Paulo Canedo de Magalhães & Marcelo Gomes Miguez, 2020. "River Restoration Integrated with Sustainable Urban Water Management for Resilient Cities," Sustainability, MDPI, vol. 12(11), pages 1-36, June.
    12. Alessandro D’Amico & Martina Russo & Marco Angelosanti & Gabriele Bernardini & Donatella Vicari & Enrico Quagliarini & Edoardo Currà, 2021. "Built Environment Typologies Prone to Risk: A Cluster Analysis of Open Spaces in Italian Cities," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    13. Paula Villagra & Marie Geraldine Herrmann & Carolina Quintana & Roger D. Sepúlveda, 2017. "Community resilience to tsunamis along the Southeastern Pacific: a multivariate approach incorporating physical, environmental, and social indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1087-1111, September.
    14. Yang Wei & Tetsuo Kidokoro & Fumihiko Seta & Bo Shu, 2024. "Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China," Land, MDPI, vol. 13(4), pages 1-24, April.
    15. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    16. David Koren & Katarina Rus, 2019. "The Potential of Open Space for Enhancing Urban Seismic Resilience: A literature Review," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    17. Elena Cantatore & Dario Esposito & Alberico Sonnessa, 2023. "Mapping the Multi-Vulnerabilities of Outdoor Places to Enhance the Resilience of Historic Urban Districts: The Case of the Apulian Region Exposed to Slow and Rapid-Onset Disasters," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    18. Marcelo Cando-Jácome & Antonio Martínez-Graña & Virginia Valdés, 2020. "Prevention of Disasters Related to Extreme Natural Ground Deformation Events by Applying Spatial Modeling in Urban Areas (Quito, Ecuador)," IJERPH, MDPI, vol. 17(3), pages 1-21, January.
    19. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    20. Graziano Salvalai & Juan Diego Blanco Cadena & Gessica Sparvoli & Gabriele Bernardini & Enrico Quagliarini, 2022. "Pedestrian Single and Multi-Risk Assessment to SLODs in Urban Built Environment: A Mesoscale Approach," Sustainability, MDPI, vol. 14(18), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:42-:d:707762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.