IDEAS home Printed from https://ideas.repec.org/a/taf/cjudxx/v18y2013i2p242-262.html
   My bibliography  Save this article

The Influence of Urban Morphology on the Resilience of Cities Following an Earthquake

Author

Listed:
  • Penny Allan
  • Martin Bryant
  • Camila Wirsching
  • Daniela Garcia
  • Maria Teresa Rodriguez

Abstract

This paper proposes a conceptual theory of resilience in urbanism and demonstrates its application through a case study. The theory's underpinnings are the attributes of resilience that have been developed in ecological sciences, but have clear parallels in urbanism. They suggest that it may be possible to enhance the resilience of a city through the design of its urban morphology. The paper explores these ideas by examining the relationship between the community's adaptive behaviour and the spaces of the city of Concepción after its 2010 earthquake. This empirical evidence suggests that the role of the urban designer in earthquake-prone cities is perhaps more critical before an earthquake happens and that the more the idea of a resilient urban morphology is embedded as part of daily life, the more effective it is likely to be in the aftermath of a major earthquake.

Suggested Citation

  • Penny Allan & Martin Bryant & Camila Wirsching & Daniela Garcia & Maria Teresa Rodriguez, 2013. "The Influence of Urban Morphology on the Resilience of Cities Following an Earthquake," Journal of Urban Design, Taylor & Francis Journals, vol. 18(2), pages 242-262, May.
  • Handle: RePEc:taf:cjudxx:v:18:y:2013:i:2:p:242-262
    DOI: 10.1080/13574809.2013.772881
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13574809.2013.772881
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13574809.2013.772881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berfin Şenik & Osman Uzun, 2021. "An assessment on size and site selection of emergency assembly points and temporary shelter areas in Düzce," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1587-1602, January.
    2. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2021. "Integrated methods to determine urban physical resilience characteristics and their interactions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 725-754, October.
    3. Magdalena Vicuña & Jorge León & Simón Guzmán, 2022. "Urban form planning and tsunami risk vulnerability: Analysis of 12 Chilean coastal cities," Environment and Planning B, , vol. 49(7), pages 1967-1979, September.
    4. Paula Villagra & Marie Geraldine Herrmann & Carolina Quintana & Roger D. Sepúlveda, 2017. "Community resilience to tsunamis along the Southeastern Pacific: a multivariate approach incorporating physical, environmental, and social indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1087-1111, September.
    5. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    6. Jin Rui & Frank Othengrafen, 2023. "Examining the Role of Innovative Streets in Enhancing Urban Mobility and Livability for Sustainable Urban Transition: A Review," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    7. Castro, Kássia Batista de & Roig, Henrique Llacer & Neumann, Marina Rolim Bilich & Rossi, Maria Silvia & Seraphim, Ana Paula Albuquerque Campos Castalonga & Réquia, Weeberb João & Costa, Alexandre Bar, 2019. "New perspectives in land use mapping based on urban morphology: A case study of the Federal District, Brazil," Land Use Policy, Elsevier, vol. 87(C).
    8. Jorge León & Alan March, 2016. "An urban form response to disaster vulnerability: Improving tsunami evacuation in Iquique, Chile," Environment and Planning B, , vol. 43(5), pages 826-847, September.
    9. Martina Russo & Marco Angelosanti & Gabriele Bernardini & Laura Severi & Enrico Quagliarini & Edoardo Currà, 2021. "Factors Influencing the Intrinsic Seismic Risk of Open Spaces in Existing Built Environments: A Systematic Review," Sustainability, MDPI, vol. 14(1), pages 1-25, December.
    10. Mohsen Alawi & Dongzhu Chu & Seba Hammad, 2023. "Resilience of Public Open Spaces to Earthquakes: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    11. Yang Wei & Tetsuo Kidokoro & Fumihiko Seta & Bo Shu, 2024. "Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China," Land, MDPI, vol. 13(4), pages 1-24, April.
    12. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    13. David Koren & Katarina Rus, 2019. "The Potential of Open Space for Enhancing Urban Seismic Resilience: A literature Review," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    14. Marcelo Cando-Jácome & Antonio Martínez-Graña & Virginia Valdés, 2020. "Prevention of Disasters Related to Extreme Natural Ground Deformation Events by Applying Spatial Modeling in Urban Areas (Quito, Ecuador)," IJERPH, MDPI, vol. 17(3), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cjudxx:v:18:y:2013:i:2:p:242-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cjud20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.