IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4979-d545867.html
   My bibliography  Save this article

A Multi-Objective Optimal Power Flow Control of Electrical Transmission Networks Using Intelligent Meta-Heuristic Optimization Techniques

Author

Listed:
  • Hatem Diab

    (Electrical Energy Department, Arab Academy for Science and Technology and Maritime Transport, Giza 12212, Egypt)

  • Mahmoud Abdelsalam

    (Electrical Energy Department, Arab Academy for Science and Technology and Maritime Transport, Giza 12212, Egypt)

  • Alaa Abdelbary

    (Applied Sciences Department, Arab Academy for Science and Technology and Maritime Transport, Alexandria 2033, Egypt)

Abstract

Optimal power flow (OPF) is considered one of the most critical challenges that can substantially impact the sustainable performance of power systems. Solving the OPF problem reduces three essential items: operation costs, transmission losses, and voltage drops. An intelligent controller is needed to adjust the power system’s control parameters to solve this problem optimally. However, many constraints must be considered that make the design process of the OPF algorithm exceedingly tricky due to the increased number of limitations and control variables. This paper proposes a multi-objective intelligent control technique based on three different meta-heuristic optimization algorithms: multi-verse optimization (MVO), grasshopper optimization (GOA), and Harris hawks optimization (HHO) to solve the OPF problem. The proposed control techniques were validated by applying them to the IEEE-30 bus system under different operating conditions through MATLAB simulations. The proposed techniques were then compared with the particle swarm optimization (PSO) algorithm, which is very popular in the literature studying how to solving the OPF problem. The obtained results show that the proposed methods are more effective in solving the OPF problem when compared to the commonly used PSO algorithm. The proposed HHO, in particular, shows that it can form a reliable candidate in solving power systems’ optimization problems.

Suggested Citation

  • Hatem Diab & Mahmoud Abdelsalam & Alaa Abdelbary, 2021. "A Multi-Objective Optimal Power Flow Control of Electrical Transmission Networks Using Intelligent Meta-Heuristic Optimization Techniques," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4979-:d:545867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    2. Yehia Gad & Hatem Diab & Mahmoud Abdelsalam & Yasser Galal, 2020. "Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique," Energies, MDPI, vol. 13(19), pages 1-22, September.
    3. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    4. Mahmoud Abdelsalam & Hatem Y. Diab, 2019. "Optimal Coordination of DOC Relays Incorporated into a Distributed Generation-Based Micro-Grid Using a Meta-Heuristic MVO Algorithm," Energies, MDPI, vol. 12(21), pages 1-16, October.
    5. Eleonora Riva Sanseverino & Maria Luisa Di Silvestre & Romina Badalamenti & Ninh Quang Nguyen & Josep Maria Guerrero & Lexuan Meng, 2015. "Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm," Energies, MDPI, vol. 8(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhouxin Lan & Qing He & Hongzan Jiao & Liu Yang, 2022. "An Improved Equilibrium Optimizer for Solving Optimal Power Flow Problem," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    2. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    2. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    5. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    6. Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.
    7. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    9. Ahmed Al Ameri & Aouchenni Ounissa & Cristian Nichita & Aouzellag Djamal, 2017. "Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution," Energies, MDPI, vol. 10(4), pages 1-16, April.
    10. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    11. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    12. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    13. Dariusz Tarnapowicz & Sergey German-Galkin & Arkadiusz Nerc & Marek Jaskiewicz, 2023. "Improving the Energy Efficiency of a Ship’s Power Plant by Using an Autonomous Hybrid System with a PMSG," Energies, MDPI, vol. 16(7), pages 1-19, March.
    14. M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
    15. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    16. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    17. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    18. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    19. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    20. Arul Rajagopalan & Karthik Nagarajan & Oscar Danilo Montoya & Seshathiri Dhanasekaran & Inayathullah Abdul Kareem & Angalaeswari Sendraya Perumal & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer," Energies, MDPI, vol. 15(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4979-:d:545867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.