IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p4078-d531097.html
   My bibliography  Save this article

The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain

Author

Listed:
  • María Rocío Ruiz-Pérez

    (Department of Architectural Constructions II, School of Building Engineering, University of Seville, Avenue Reina Mercedes 4, 41012 Seville, Spain)

  • María Desirée Alba-Rodríguez

    (Department of Architectural Constructions II, School of Building Engineering, University of Seville, Avenue Reina Mercedes 4, 41012 Seville, Spain)

  • Cristina Rivero-Camacho

    (Department of Architectural Constructions II, School of Building Engineering, University of Seville, Avenue Reina Mercedes 4, 41012 Seville, Spain)

  • Jaime Solís-Guzmán

    (Department of Architectural Constructions II, School of Building Engineering, University of Seville, Avenue Reina Mercedes 4, 41012 Seville, Spain)

  • Madelyn Marrero

    (Department of Architectural Constructions II, School of Building Engineering, University of Seville, Avenue Reina Mercedes 4, 41012 Seville, Spain)

Abstract

Urbanization projects, understood as those supplying basic services for cities, such as drinking water, sewers, communication services, power, and lighting, are normally short-term extremely scattered actions, and it can be difficult to track their environmental impact. The present article’s main contribution is to employ the project budgets of public urbanization work to provide an instrument for environmental improvement, thereby helping public procurement, including sustainability criteria. Two urban projects in Seville, Spain are studied: the first substitutes existing services, and the second also includes gardens and playgrounds in the street margins. The methodology finds the construction elements that must be controlled in each project from the perspective of three indicators: carbon, water footprints, and embodied energy. The main impacts found are due to only four construction units: concrete, aggregates, asphalt, and ceramic pipes for the sewer system, that represent 70% or more of the total impact in all indicators studied. The public developer can focus procurement on those few elements in order to exert a lower impact and to significantly reduce the environmental burden of urbanization projects.

Suggested Citation

  • María Rocío Ruiz-Pérez & María Desirée Alba-Rodríguez & Cristina Rivero-Camacho & Jaime Solís-Guzmán & Madelyn Marrero, 2021. "The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4078-:d:531097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/4078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/4078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madelyn Marrero & Antonio Ramirez-De-Arellano, 2010. "The building cost system in Andalusia: application to construction and demolition waste management," Construction Management and Economics, Taylor & Francis Journals, vol. 28(5), pages 495-507.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Guang-Xin Gao, 2018. "Sustainable Winner Determination for Public-Private Partnership Infrastructure Projects in Multi-Attribute Reverse Auctions," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    4. Jaime Solís-Guzmán & Cristina Rivero-Camacho & Desirée Alba-Rodríguez & Alejandro Martínez-Rocamora, 2018. "Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Débora Lopes R. Silva & Cristina Rivero-Camacho & Diana Rusu & Madelyn Marrero, 2022. "Methodology for Improving the Sustainability of Industrial Buildings via Matrix of Combinations Water and Carbon Footprint Assessment," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    2. Madelyn Marrero & Maciej Wojtasiewicz & Alejandro Martínez-Rocamora & Jaime Solís-Guzmán & M. Desirée Alba-Rodríguez, 2020. "BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    3. Jaime Solís-Guzmán & Cristina Rivero-Camacho & Desirée Alba-Rodríguez & Alejandro Martínez-Rocamora, 2018. "Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    4. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    5. Pilar Mercader-Moyano & Jesús Roldán-Porras, 2020. "Evaluating Environmental Impact in Foundations and Structures through Disaggregated Models: Towards the Decarbonisation of the Construction Sector," Sustainability, MDPI, vol. 12(12), pages 1-30, June.
    6. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).
    7. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    8. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    9. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    10. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    11. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    12. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    13. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    14. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    15. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    16. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    17. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    18. Arman Hashemi & Heather Cruickshank & Ali Cheshmehzangi, 2015. "Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    19. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    20. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4078-:d:531097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.