IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p4044-d530557.html
   My bibliography  Save this article

Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production

Author

Listed:
  • Hafiz Shahzad Ahmad

    (Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan 60000, Pakistan)

  • Muhammad Imran

    (Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan 60000, Pakistan)

  • Fiaz Ahmad

    (Physiology Section, Central Cotton Research Institute, Multan 60000, Pakistan)

  • Shah Rukh

    (Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan 60000, Pakistan
    National Centre of Excellence in Geology, University of Peshawar Pakistan, Peshawar 25120, Pakistan)

  • Rao Muhammad Ikram

    (Department of Agronomy, MNS University of Agriculture, Multan 60000, Pakistan)

  • Hafiz Muhammad Rafique

    (Pesticide Quality Control Laboratory, Multan 60000, Pakistan)

  • Zafar Iqbal

    (Soil and Water Testing Laboratory Mianwali, Mianwali 42200, Pakistan)

  • Abdulaziz Abdullah Alsahli

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Mohammed Nasser Alyemeni

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Shafaqat Ali

    (Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
    Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan)

  • Tanveer-ul-Haq

    (Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan 60000, Pakistan)

Abstract

The socio-economic development of a country is highly dependent on water availability. Nowadays, increasing water scarcity is a major global challenge. Continuing improvements in water-use efficiency are essential for cotton production sustainability. Reduced irrigation in cotton could be a solution to water shortage in the arid climate without compromising the cotton yield. Therefore, a two-year field study was conducted to assess the effect of two levels of irrigation i.e., 50% and 100% of available water content (AWC) on the yield of four cotton genotypes (CIM-678, CIM-343, CRIS-613, and CYTO-510). The maximum seed cotton yield was observed in CIM-678, which was 2.31 and 2.46 Mg ha −1 under 100% AWC during 2018 and 2019, respectively, and was non-significantly reduced by 7.7 and 8.94%, owing to deficit irrigation. The maximum water use efficiency (WUE) of 0.55 and 0.64 Kg ha −1 mm −1 was observed under 50% AWC in CIM-678, which was significantly higher than WUE at 100% AWC during both years. Leaf area index and physiological parameters such as photosynthesis rate, transpiration rate, and stomatal conductance were not significantly affected by deficit irrigation. So, it was concluded that the reduced irrigation technique performed well without significant yield loss, improve WUE, and saved 37 cm of water that could be used for other crops or to increase the area of the cotton crop.

Suggested Citation

  • Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4044-:d:530557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/4044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/4044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    2. Ertek, Ahmet & Kanber, Riza, 2003. "Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton," Agricultural Water Management, Elsevier, vol. 60(1), pages 1-11, April.
    3. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    4. Wanjura, Donald F. & Upchurch, Dan R. & Mahan, James R. & Burke, John J., 2002. "Cotton yield and applied water relationships under drip irrigation," Agricultural Water Management, Elsevier, vol. 55(3), pages 217-237, June.
    5. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    6. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    7. I. Tsakmakis & N. Kokkos & V. Pisinaras & V. Papaevangelou & E. Hatzigiannakis & G. Arampatzis & G.D. Gikas & R. Linker & S. Zoras & V. Evagelopoulos & V.A. Tsihrintzis & A. Battilani & G. Sylaios, 2017. "Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 563-580, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleni Tsaliki & Romain Loison & Apostolos Kalivas & Ioannis Panoras & Ioannis Grigoriadis & Abdou Traore & Jean-Paul Gourlot, 2023. "Cotton Cultivation in Greece under Sustainable Utilization of Inputs," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    2. Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Sultan & Muhammad Sultan Ali Bazmi & Redmond R. Shamshiri & Sobhy M. Ibrahim & Muhammad A. Imran, 2022. "Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate," Agriculture, MDPI, vol. 12(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    2. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    3. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    4. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Eleni Tsaliki & Romain Loison & Apostolos Kalivas & Ioannis Panoras & Ioannis Grigoriadis & Abdou Traore & Jean-Paul Gourlot, 2023. "Cotton Cultivation in Greece under Sustainable Utilization of Inputs," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    7. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    9. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    10. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Ahmed, Zeeshan & Zhang, Bo & Iqbal, Hassan & Xue, Jie, 2019. "Nitrogen leaching, recovery efficiency, and cotton productivity assessments on desert-sandy soil under various application methods," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    13. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    14. Vassilios Pisinaras & Frank Herrmann & Andreas Panagopoulos & Evangelos Tziritis & Ian McNamara & Frank Wendland, 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study," Sustainability, MDPI, vol. 15(5), pages 1-29, February.
    15. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    16. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    17. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    18. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    20. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4044-:d:530557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.