IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3992-d529586.html
   My bibliography  Save this article

Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019

Author

Listed:
  • Gang Deng

    (Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Zhiguang Tang

    (Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Guojie Hu

    (State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Jingwen Wang

    (National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
    School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Guoqing Sang

    (National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
    School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Jia Li

    (National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
    School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract

Snow cover is an important water resource in arid and semi-arid regions of Central Asia, and is related to agricultural and livestock production, ecosystems, and socio-economic development. The snowline altitude (SLA) is a significant indicator for monitoring the changes in snow cover in mountainous regions under the changing climate. Here, we investigate the spatiotemporal variation of SLA in the Tienshan Mountains (TS) during 2001–2019 using Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products on a grid-by-grid basis. The potential influence of topographic factors (slope gradient and aspect) on SLA and the correlation between SLA, temperature, precipitation, and solar radiation are also investigated. The results are as follows: (1) The annual cycle of SLA shows strong seasonal fluctuations (from about 2000 m in late December to 4100 m in early August). The SLA over the TS exhibits a large spatiotemporal heterogeneity. (2) SLA increases with a steeper slope gradient. The SLA of the northerly aspect is generally less than the southerly. (3) The SLA over the TS generally shows an increasing trend in the recent years (2001–2019). The change trend of SLA varies in different months. Except for a slight decrease in June, the SLA increased in almost all months, especially at the start of the melt season (March and April) and the end of melting season (July and August). (4) The SLA increases with increased temperature/radiation in the TS, and decreases with increased precipitation. Solar radiation is the dominant climatic factor affecting the changes of SLA in the TS. Compared with precipitation, temperature is more correlated to SLA dynamics.

Suggested Citation

  • Gang Deng & Zhiguang Tang & Guojie Hu & Jingwen Wang & Guoqing Sang & Jia Li, 2021. "Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3992-:d:529586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. Caloiero & R. Coscarelli & E. Ferrari, 2018. "Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4971-4983, December.
    2. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Sun & Chunxiang Shi & Xiao Liang & Shuai Zhang & Junxia Gu & Shuai Han & Hui Jiang & Bin Xu & Qingbo Yu & Yujing Liang & Shuai Deng, 2023. "The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations," Sustainability, MDPI, vol. 15(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    2. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    4. Yihao Zhang & Jianzhong Yan & Xian Cheng & Xinjun He, 2021. "Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau," IJERPH, MDPI, vol. 18(5), pages 1-24, March.
    5. Weibing Du & Weiqian Ji & Linjuan Xu & Shuangting Wang, 2020. "Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method," IJERPH, MDPI, vol. 17(8), pages 1-18, April.
    6. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    8. Huili He & Rafiq Hamdi & Geping Luo & Peng Cai & Xiuliang Yuan & Miao Zhang & Piet Termonia & Philippe Maeyer & Alishir Kurban, 2022. "The summer cooling effect under the projected restoration of Aral Sea in Central Asia," Climatic Change, Springer, vol. 174(1), pages 1-21, September.
    9. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    10. Steven G. Pueppke & Margulan K. Iklasov & Volker Beckmann & Sabir T. Nurtazin & Niels Thevs & Sayat Sharakhmetov & Buho Hoshino, 2018. "Challenges for Sustainable Use of the Fish Resources from Lake Balkhash, a Fragile Lake in an Arid Ecosystem," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    11. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    12. Václav Šípek & Michal Jenicek & Jan Hnilica & Nikol Zelíková, 2021. "Catchment Storage and its Influence on Summer Low Flows in Central European Mountainous Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2829-2843, July.
    13. Peña‐Guerrero, Mayra Daniela & Umirbekov, Atabek & Tarasova, Larisa & Müller, Daniel, 2022. "Comparing the performance of high‐resolution global precipitation products across topographic and climatic gradients of Central Asia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(11), pages 5554-5569.
    14. Ram Shah & Subodh Sharma & Peter Haase & Sonja Jähnig & Steffen Pauls, 2015. "The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions," Climatic Change, Springer, vol. 132(2), pages 265-278, September.
    15. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    16. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    17. Mohammed Achite & Tommaso Caloiero & Abderrezak Kamel Toubal, 2022. "Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    18. Yu, Yang & Yu, Ruide & Chen, Xi & Yu, Guoan & Gan, Miao & Disse, Markus, 2017. "Agricultural water allocation strategies along the oasis of Tarim River in Northwest China," Agricultural Water Management, Elsevier, vol. 187(C), pages 24-36.
    19. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    20. Christopher White & Trevor Tanton & David Rycroft, 2014. "The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5267-5281, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3992-:d:529586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.