IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3131-d515846.html
   My bibliography  Save this article

New Coordinated Tuning of SVC and PSSs in Multimachine Power System Using Coyote Optimization Algorithm

Author

Listed:
  • Tawfik Guesmi

    (Department of Electrical Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia
    Department of Electrical Engineering, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Badr M. Alshammari

    (Department of Electrical Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Yasser Almalaq

    (Department of Electrical Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Ayoob Alateeq

    (Department of Electrical Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

  • Khalid Alqunun

    (Department of Electrical Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia)

Abstract

This paper presents a new approach for coordinated design of power system stabilizers (PSSs) and static VAR compensator (SVC)-based controller. For this purpose, the design problem is considered as an optimization problem whose decision variables are the controllers’ parameters. Due to nonlinearities of large, interconnected power systems, methods capable of handling any nonlinearity of power networks are mostly preferable. In this regard, a nonlinear time domain based objective function is used. Then, the coyote optimization algorithm (COA) is employed for solving this optimization problem. In order to ensure the robustness and performance of the proposed controller (COA-PSS&SVC), the objective function is evaluated for various extreme loading conditions and system configurations. To show the contribution of the coordinated controllers on the improvement of the system stability, PSSs and SVC are optimally designed in individual and coordinated manners. Moreover, the effectiveness of the COA-PSS&SVC is assessed through comparison with other controllers. Nonlinear time domain simulation shows the superiority of the proposed controller and its ability in providing efficient damping of electromechanical oscillations.

Suggested Citation

  • Tawfik Guesmi & Badr M. Alshammari & Yasser Almalaq & Ayoob Alateeq & Khalid Alqunun, 2021. "New Coordinated Tuning of SVC and PSSs in Multimachine Power System Using Coyote Optimization Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3131-:d:515846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pallavi Choudekar & S. K. Sinha & Anwar Siddiqui, 2017. "Optimal location of SVC for improvement in voltage stability of a power system under normal and contingency condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1312-1318, November.
    2. Humberto Verdejo & Victor Pino & Wolfgang Kliemann & Cristhian Becker & José Delpiano, 2020. "Implementation of Particle Swarm Optimization (PSO) Algorithm for Tuning of Power System Stabilizers in Multimachine Electric Power Systems," Energies, MDPI, vol. 13(8), pages 1-29, April.
    3. Sergio Bruno & Giovanni De Carne & Massimo La Scala, 2020. "Distributed FACTS for Power System Transient Stability Control," Energies, MDPI, vol. 13(11), pages 1-16, June.
    4. Conner, Mary M. & Ebinger, Michael R. & Knowlton, Frederick F., 2008. "Evaluating coyote management strategies using a spatially explicit, individual-based, socially structured population model," Ecological Modelling, Elsevier, vol. 219(1), pages 234-247.
    5. Wenping Hu & Jifeng Liang & Yitao Jin & Fuzhang Wu, 2018. "Model of Power System Stabilizer Adapting to Multi-Operating Conditions of Local Power Grid and Parameter Tuning," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    6. Jouda Arfaoui & Hegazy Rezk & Mujahed Al-Dhaifallah & Mohamed N. Ibrahim & Mami Abdelkader, 2020. "Simulation-Based Coyote Optimization Algorithm to Determine Gains of PI Controller for Enhancing the Performance of Solar PV Water-Pumping System," Energies, MDPI, vol. 13(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Aliyu Sabo & Bashir Yunus Kolapo & Theophilus Ebuka Odoh & Musa Dyari & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy, 2022. "Solar, Wind and Their Hybridization Integration for Multi-Machine Power System Oscillation Controllers Optimization: A Review," Energies, MDPI, vol. 16(1), pages 1-32, December.
    3. Ali, E.S. & Elazim, S.M. Abd & Balobaid, A.S., 2023. "Implementation of coyote optimization algorithm for solving unit commitment problem in power systems," Energy, Elsevier, vol. 263(PA).
    4. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2023. "Non-Iterative, Unique, and Logical Formula-Based Technique to Determine Maximum Load Multiplier and Practical Load Multiplier for Both Transmission and Distribution Systems," Energies, MDPI, vol. 16(12), pages 1-19, June.
    2. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    5. Farag Ali El-Sheikhi & Hisham M. Soliman & Razzaqul Ahshan & Eklas Hossain, 2021. "Regional Pole Placers of Power Systems under Random Failures/Repair Markov Jumps," Energies, MDPI, vol. 14(7), pages 1-14, April.
    6. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    7. Paweł Albrechtowicz & Jerzy Szczepanik, 2021. "The Comparative Analysis of Phase Shifting Transformers," Energies, MDPI, vol. 14(14), pages 1-16, July.
    8. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    9. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
    10. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Watkins, Katherine Shepard & Rose, Kenneth A., 2013. "Evaluating the performance of individual-based animal movement models in novel environments," Ecological Modelling, Elsevier, vol. 250(C), pages 214-234.
    12. Michał Izdebski & Robert Małkowski & Piotr Miller, 2022. "New Performance Indices for Power System Stabilizers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    13. Zhaojuan Zhang & Wanliang Wang & Gaofeng Pan, 2020. "A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem," Mathematics, MDPI, vol. 8(11), pages 1-21, October.
    14. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    15. Stenglein, Jennifer L. & Gilbert, Jonathan H. & Wydeven, Adrian P. & Van Deelen, Timothy R., 2015. "An individual-based model for southern Lake Superior wolves: A tool to explore the effect of human-caused mortality on a landscape of risk," Ecological Modelling, Elsevier, vol. 302(C), pages 13-24.
    16. Aliyu Sabo & Bashir Yunus Kolapo & Theophilus Ebuka Odoh & Musa Dyari & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy, 2022. "Solar, Wind and Their Hybridization Integration for Multi-Machine Power System Oscillation Controllers Optimization: A Review," Energies, MDPI, vol. 16(1), pages 1-32, December.
    17. Mori, Kensuke & Massolo, Alessandro & Marceau, Danielle & Stefanakis, Emmanuel, 2023. "Modelling the epidemiology of zoonotic parasites transmitted through a predator-prey system in urban landscapes: The Calgary Echinococcus multilocularis Coyote Agent-based model (CEmCA)," Ecological Modelling, Elsevier, vol. 475(C).
    18. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.
    19. Yosra Welhazi & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ayoob Alateeq & Yasser Almalaq & Robaya Alsabhan & Hsan Hadj Abdallah, 2022. "A Novel Hybrid Chaotic Jaya and Sequential Quadratic Programming Method for Robust Design of Power System Stabilizers and Static VAR Compensator," Energies, MDPI, vol. 15(3), pages 1-43, January.
    20. Ali, E.S. & Elazim, S.M. Abd & Balobaid, A.S., 2023. "Implementation of coyote optimization algorithm for solving unit commitment problem in power systems," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3131-:d:515846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.