IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1057-d483864.html
   My bibliography  Save this article

Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt

Author

Listed:
  • Mohamed Abu-Hashim

    (Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt)

  • Ahmed Sayed

    (Desert Research Center, Department of Pedology, El-Matrya, Cairo 11753, Egypt)

  • Martina Zelenakova

    (Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia)

  • Zuzana Vranayová

    (Department of Building Facilities, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia)

  • Mohamed Khalil

    (Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt)

Abstract

Preserving the sustainable agriculture concept requires identifying the plant response to the water regime and rationing the water for irrigation. This research compares different irrigation designs coupled with a parametric evaluation system on soil water erosion and soil suitability to assess the sites vulnerable to soil erosion based on a soil water erosion model (ImpelERO) in an area of 150.0 hectares, Ismailia Governorate, Egypt. Land suitability maps are prepared using the Geographic Information System (GIS), and the soil properties are analyzed and evaluated for the different surface, sprinkler, and drip irrigation methods. The results show that the sprinkler and drip irrigation strategies are more practical irrigation methods and additional environment friendly than surface irrigation for enhancing land productivity. Moreover, the principle acumen for creating use of the surface irrigation on this space is for lowering the soil salinity. Land capability index for surface irrigation ranges from 20.5 to 72.2% (permanently not suitable N2 to moderately suitable S2); and the max capability index (Ci) for drip irrigation was 81.3% (highly suitable-S1), while the mean capability index (Ci) was 42.87% (Currently not suitable-NI). The land suitability of the study area using sprinkler irrigation was ranked as highly suitable (S1), moderately suitable (S2), marginally suitable (S3), and currently not suitable (N1). Thus, the obtained data indicated that applying drip irrigation (trickle irrigation) was the most efficient system compared to the sprinkle and surface irrigation systems. To identify the soil, water erosion vulnerability, and soil optimal management strategies for the agricultural parcel in that region, the ImpelERO model (soil erosion vulnerability/impact/management) was applied. Erosion risk classes ranged from V2 (small) to V3 (moderate), that that region categorized as small-sensitive to water erosion by alfalfa, to moderate-sensitive to water erosion by olive. The results of soil losses varied from 7.1 to 37.9 t ha −1 yr −1 with an average of 17.7 t ha −1 yr −1 . Thus, guarantee efficient water use and soil suitability for food production in the future will require the use of an efficient irrigation system.

Suggested Citation

  • Mohamed Abu-Hashim & Ahmed Sayed & Martina Zelenakova & Zuzana Vranayová & Mohamed Khalil, 2021. "Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1057-:d:483864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    2. Albaji, Mohammad & Shahnazari, Ali & Behzad, Majid & Naseri, AbdAli & BoroomandNasab, Saeed & Golabi, Mona, 2010. "Comparison of different irrigation methods based on the parametric evaluation approach in Dosalegh plain: Iran," Agricultural Water Management, Elsevier, vol. 97(7), pages 1093-1098, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishtman Karimi & Hossein Azadi & Kobe Boussauw, 2021. "The Water Management Regime in Western Iran: A Retrospective Analysis through a Hybrid Transitions Framework," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    2. Mohamed Abu-hashim & Holger Lilienthal & Ewald Schnug & Rosa Lasaponara & Elsayed Said Mohamed, 2023. "Can a Change in Agriculture Management Practice Improve Soil Physical Properties," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    3. Mohsen Farzin & Azar Asadi & Katarina Pukanska & Martina Zelenakova, 2022. "An Assessment on the Safety of Drinking Water Resources in Yasouj, Iran," Sustainability, MDPI, vol. 14(6), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    2. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    4. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    5. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    7. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    8. Vedran Krevh & Lana Filipović & Jasmina Defterdarović & Igor Bogunović & Yonggen Zhang & Zoran Kovač & Andrew Barton & Vilim Filipović, 2023. "Investigating Near-Surface Hydrologic Connectivity in a Grass-Covered Inter-Row Area of a Hillslope Vineyard Using Field Monitoring and Numerical Simulations," Land, MDPI, vol. 12(5), pages 1-18, May.
    9. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    11. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    13. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    14. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    15. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    16. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    18. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    19. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1057-:d:483864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.