IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1043-d483859.html
   My bibliography  Save this article

Effectiveness of Active Luminous Lane Markings on Highway at Night: A Driving Simulation Study

Author

Listed:
  • Bencheng Zhu

    (The Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China)

  • Cancan Song

    (The Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China)

  • Zhongyin Guo

    (The Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China)

  • Yu Zhang

    (Shandong Road Region Safety and Emergency Support Laboratory, Shandong Transportation Institute, Jinan 250102, China)

  • Zichu Zhou

    (The Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract

Road lane markings play an essential role in maintaining traffic order and improving traffic safety and efficiency. Active luminous lane markings have emerged with advances in technology recently. However, it is still not completely clear what impact their application will have on drivers. This paper aimed to study the effectiveness of active luminous lane markings on highways at night. A driving simulation experiment was carried out based on advanced driving simulators at Tongji University. The driving simulation experiment involved 31 participants and 9 simulation scenes with 6 different types of lane markings models and the same 2-way highway segment, which was 5300-m long with four 3.75-m wide driving lanes. The study participants drove through the simulated highway while the vehicle operation data and the driver’s eyes changing data were continuously captured. Overall, the pupil area change rate, steering wheel speed, brake pedal force, gas pedal, lane departure, and operating speed indicators were selected to evaluate the effectiveness of the active luminous lane markings. The results are shown as follows: (1) the active luminous lane markings have excellent visual recognition performance at night. Compared with the passive luminous lane markings, the active luminous markings can reduce the mental and physical loads of drivers, increase the early braking distance significantly, improve the lane-keeping ability and smooth the operating speed; (2) for the specific parameter settings of the active luminous lane markings at night, the yellow lane markings are better than the white ones, the point-line-type lane markings are superior to the conventional-type ones, and the blinking frequency is reasonable to set, at a moderate level, as 40 times per min. The results suggest that there are positive effects of active luminous lane markings on the promotion of highway traffic safety and efficiency at night, providing theoretical support for the popularization and application of active luminous road lane markings.

Suggested Citation

  • Bencheng Zhu & Cancan Song & Zhongyin Guo & Yu Zhang & Zichu Zhou, 2021. "Effectiveness of Active Luminous Lane Markings on Highway at Night: A Driving Simulation Study," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1043-:d:483859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    2. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    3. Ruichen Wang & Paul Allen & Yang Song & Zhiwei Wang, 2022. "Modelling and Analysis of Power-Regenerating Potential for High-Speed Train Suspensions," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    4. Wenich Vattanapuripakorn & Sathapon Sonsupap & Khomson Khannam & Natthakrit Bamrungwong & Prachakon Kaewkhiaw & Jiradanai Sarasamkan & Bopit Bubphachot, 2022. "Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation," Clean Technol., MDPI, vol. 4(4), pages 1-14, October.
    5. Roberto De Fazio & Mariangela De Giorgi & Donato Cafagna & Carolina Del-Valle-Soto & Paolo Visconti, 2023. "Energy Harvesting Technologies and Devices from Vehicular Transit and Natural Sources on Roads for a Sustainable Transport: State-of-the-Art Analysis and Commercial Solutions," Energies, MDPI, vol. 16(7), pages 1-46, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1043-:d:483859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.