IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13832-d702578.html
   My bibliography  Save this article

Evaluation of Symbiotic Association between Various Rhizobia, Capable of Producing Plant-Growth-Promoting Biomolecules, and Mung Bean for Sustainable Production

Author

Listed:
  • Abid Mahmood

    (Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
    Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA)

  • Tanvir Shahzad

    (Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Sabir Hussain

    (Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Qasim Ali

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Hayssam M. Ali

    (Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Sanaullah Yasin

    (Cotton Research Station Ghotki, Pakistan Central Cotton Committee Multan, Multan 66000, Pakistan)

  • Muhammad Ibrahim

    (Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Mohamed Z. M. Salem

    (Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt)

  • Muhammad Khalid

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

Abstract

To feed the increased world population, sustainability in the production of crops is the need of the hour, and exploration of an effective symbiotic association of rhizobia with legumes may serve the purpose. A laboratory-scale experiment was conducted to evaluate the symbiotic effectiveness of twenty wild rhizobial isolates (MR1–MR20) on the growth, physiology, biochemical traits, and nodulation of mung bean to predict better crop production with higher yields. Rhizobial strain MR4 resulted in a 52% increase in shoot length and 49% increase in shoot fresh mass, while MR5 showed a 30% increase in root length, with 67% and 65% improvement in root fresh mass by MR4 and MR5, respectively, compared to uninoculated control. Total dry matter of mung bean was enhanced by 73% and 68% with strains MR4 and MR5 followed by MR1 and MR3 with 60% increase in comparison to control. Rhizobial strain MR5 produced a maximum (25 nodules) number of nodules followed by MR4, MR3, and MR1 which produced 24, 23, and 21 nodules per plant. Results related to physiological parameters showed the best performance of MR4 and MR5 compared to control among all treatments. MR4 strain helped the plants to produce the lowest values of total soluble protein (TSP) (38% less), flavonoids contents (44% less), and malondialdehyde (MDA) contents (52% less) among all treatments compared to uninoculated control plants. Total phenolics contents of mung bean plants also showed significantly variable results, with the highest value of 54.79 mg kg −1 in MR4 inoculated plants, followed by MR5 and MR1 inoculated plants, while the minimum concentration of total phenolics was recorded in uninoculated control plants of mung bean. Based on the results of growth promotion, nodulation ability, and physiological and biochemical characteristics recorded in an experimental trial conducted under gnotobiotic conditions, four rhizobial isolates (MR1, MR3, MR4, and MR5) were selected using cluster and principal component analysis. Selected strains were also tested for a variety of plant-growth-promoting molecules to develop a correlation with the results of plant-based parameters, and it was concluded that these wild rhizobial strains were effective in improving sustainable production of mung bean.

Suggested Citation

  • Abid Mahmood & Tanvir Shahzad & Sabir Hussain & Qasim Ali & Hayssam M. Ali & Sanaullah Yasin & Muhammad Ibrahim & Mohamed Z. M. Salem & Muhammad Khalid, 2021. "Evaluation of Symbiotic Association between Various Rhizobia, Capable of Producing Plant-Growth-Promoting Biomolecules, and Mung Bean for Sustainable Production," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13832-:d:702578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben-Asher, Jiftah & Tsuyuki, Itaru & Bravdo, Ben-Ami & Sagih, Moshe, 2006. "Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 13-21, May.
    2. Urooj Kanwal & Muhammad Ibrahim & Farhat Abbas & Muhammad Yamin & Fariha Jabeen & Anam Shahzadi & Aitazaz A. Farooque & Muhammad Imtiaz & Allah Ditta & Shafaqat Ali, 2021. "Phytoextraction of Lead Using a Hedge Plant [ Alternanthera bettzickiana (Regel) G. Nicholson]: Physiological and Biochemical Alterations through Bioresource Management," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    2. Ben-Asher, J. & van Dam, J. & Feddes, R.A. & Jhorar, R.K., 2006. "Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 22-29, May.
    3. Ohana-Levi, Noa & Munitz, Sarel & Ben-Gal, Alon & Netzer, Yishai, 2020. "Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    5. Knowling, Matthew J. & Bennett, Bree & Ostendorf, Bertram & Westra, Seth & Walker, Rob R. & Pellegrino, Anne & Edwards, Everard J. & Collins, Cassandra & Pagay, Vinay & Grigg, Dylan, 2021. "Bridging the gap between data and decisions: A review of process-based models for viticulture," Agricultural Systems, Elsevier, vol. 193(C).
    6. Qin, Wenli & Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei, 2018. "Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 330-339.
    7. Muhammad Sabir & Edita Baltrėnaitė-Gedienė & Allah Ditta & Hussain Ullah & Aatika Kanwal & Sajid Ullah & Turki Kh. Faraj, 2022. "Bioaccumulation of Heavy Metals in a Soil–Plant System from an Open Dumpsite and the Associated Health Risks through Multiple Routes," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    8. Jun Ma & Jianpeng Zhang & Jinliang Wang & Vadim Khromykh & Jie Li & Xuzheng Zhong, 2023. "Global Leaf Area Index Research over the Past 75 Years: A Comprehensive Review and Bibliometric Analysis," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    9. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    10. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    11. Sana Ashraf & Sajid Rashid Ahmad & Qasim Ali & Sobia Ashraf & Muzaffar Majid & Zahir Ahmad Zahir, 2022. "Acidified Cow Dung-Assisted Phytoextraction of Heavy Metals by Ryegrass from Contaminated Soil as an Eco-Efficient Technique," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    12. Nicolas, Floyid & Kamai, Tamir & Ben-Gal, Alon & Ochoa-Brito, Jose & Daccache, Andre & Ogunmokun, Felix & Kisekka, Isaya, 2023. "Assessing salinity impacts on crop yield and economic returns in the Central Valley," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Munitz, Sarel & Schwartz, Amnon & Netzer, Yishai, 2019. "Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. 'Cabernet Sauvignon' vineyard," Agricultural Water Management, Elsevier, vol. 219(C), pages 86-94.
    14. Teixeira, A.H. de C. & Bastiaanssen, W.G.M. & Bassoi, L.H., 2007. "Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 31-42, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13832-:d:702578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.