IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13278-d692006.html
   My bibliography  Save this article

Crop Litter Has a Strong Effect on Soil Organic Matter Sequestration in Semi-Arid Environments

Author

Listed:
  • Nikolaos V. Paranychianakis

    (School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece)

  • Giorgos Giannakis

    (School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece)

  • Daniel Moraetis

    (Department of Applied Physics and Astronomy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Vasileios A. Tzanakakis

    (Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71410 Iraklion, Greece)

  • Nikolaos P. Nikolaidis

    (School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece)

Abstract

The agricultural soils in the Mediterranean are characterized by low stocks of soil organic matter (SOM) because of the intensive management practices and constraints on litter inputs to the soil imposed by environmental conditions (low precipitation, high evapotranspiration). To date, several studies have provided evidence for a low potential of Mediterranean agroecosystems, especially on its southern part, to store C, even under soil conservation practices (e.g., non-tillage), questioning the capacity of commonly applied practices to restore soil health, mitigate climate change and improve resilience of agroecosystems to climate extremes. Using paired orchards of avocado and olive trees, we show that soils in the South Mediterranean have a high potential for C storage that depends strongly on crop type and soil properties. Soils planted with avocado trees showed higher SOM contents compared to olive trees mainly in the upper soil layer (0–10 cm) which were linked to higher inputs and litter chemistry. Our findings enable us to re-define achievable thresholds of SOC (≈8%) in Southern Mediterranean soils to store C, to quantify the effect of different cropping systems, and the period required to reach this potential and how this potential is affected by soil properties. Thus, the findings have profound implications for the design of soil conservation practices compatible with Mediterranean conditions and developing initiatives describing achievable targets of SOM restoration depending on soil properties and cropping systems.

Suggested Citation

  • Nikolaos V. Paranychianakis & Giorgos Giannakis & Daniel Moraetis & Vasileios A. Tzanakakis & Nikolaos P. Nikolaidis, 2021. "Crop Litter Has a Strong Effect on Soil Organic Matter Sequestration in Semi-Arid Environments," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13278-:d:692006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordon D. Hemingway & Daniel H. Rothman & Katherine E. Grant & Sarah Z. Rosengard & Timothy I. Eglinton & Louis A. Derry & Valier V. Galy, 2019. "Mineral protection regulates long-term global preservation of natural organic carbon," Nature, Nature, vol. 570(7760), pages 228-231, June.
    2. Cynthia M. Kallenbach & Serita D. Frey & A. Stuart Grandy, 2016. "Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    3. Marco Keiluweit & Tom Wanzek & Markus Kleber & Peter Nico & Scott Fendorf, 2017. "Anaerobic microsites have an unaccounted role in soil carbon stabilization," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Kristina Witzgall & Alix Vidal & David I. Schubert & Carmen Höschen & Steffen A. Schweizer & Franz Buegger & Valérie Pouteau & Claire Chenu & Carsten W. Mueller, 2021. "Particulate organic matter as a functional soil component for persistent soil organic carbon," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Andrea D Basche & Marcia S DeLonge, 2019. "Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    6. Megan B. Machmuller & Marc G. Kramer & Taylor K. Cyle & Nick Hill & Dennis Hancock & Aaron Thompson, 2015. "Emerging land use practices rapidly increase soil organic matter," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
    7. Wenjuan Huang & Steven J. Hall, 2017. "Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunwei Han & Qing Wang & Fucheng Li & Yalin Guo & Songtao Shen & Guohui Luo & Yuting Zheng, 2023. "Carbon Distribution Characteristics and Sequestration Potential of Various Land-Use Types in a Stony Soil Zone of the Arid Mountainous Regions on the Eastern Tibetan Plateau," Sustainability, MDPI, vol. 15(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Bardsley, Nicholas, 2021. "Recent Advances in Biofarming Show Potential for Rapid Soil Restoration, with Carbon, Health and Livelihoods Benefits," MPRA Paper 121184, University Library of Munich, Germany.
    3. Katerina Georgiou & Robert B. Jackson & Olga Vindušková & Rose Z. Abramoff & Anders Ahlström & Wenting Feng & Jennifer W. Harden & Adam F. A. Pellegrini & H. Wayne Polley & Jennifer L. Soong & William, 2022. "Global stocks and capacity of mineral-associated soil organic carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Never Assan & Enock Muteyo & Mgcini Moyo & Prince Chisoro, 2025. "A Review of Grassland Ecosystems as Carbon Sinks: Opportunities and Challenges for Climate-Smart Land Use and Agriculture," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 10(4), pages 1040-1076, April.
    5. Guopeng Liang & John Stark & Bonnie Grace Waring, 2023. "Mineral reactivity determines root effects on soil organic carbon," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Emily D. Whalen & A. Stuart Grandy & Kevin M. Geyer & Eric W. Morrison & Serita D. Frey, 2024. "Microbial trait multifunctionality drives soil organic matter formation potential," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Dafydd M. O. Elias & Kelly E. Mason & Tim Goodall & Ashley Taylor & Pengzhi Zhao & Alba Otero-Fariña & Hongmei Chen & Caroline L. Peacock & Nicholas J. Ostle & Robert Griffiths & Pippa J. Chapman & Jo, 2024. "Microbial and mineral interactions decouple litter quality from soil organic matter formation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Ke-Qing Xiao & Oliver W. Moore & Peyman Babakhani & Lisa Curti & Caroline L. Peacock, 2022. "Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    10. Guang-Yi Wei & Alexandre Pohl & Shijun Jiang & Hua Zhang & Wenqian Wang & Philip A. E. Pogge von Strandmann & Pierre Maffre & Guolin Xiong & Shu-zhong Shen & Feifei Zhang, 2025. "Changes in continental weathering regimes inhibited global marine deoxygenation during the Paleocene-Eocene thermal maximum," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    13. Sklenicka, Petr & Zouhar, Jan & Molnarova, Kristina Janeckova & Vlasak, Josef & Kottova, Blanka & Petrzelka, Peggy & Gebhart, Michal & Walmsley, Alena, 2020. "Trends of soil degradation: Does the socio-economic status of land owners and land users matter?," Land Use Policy, Elsevier, vol. 95(C).
    14. Sandhya Karki & M. Arlene A. Adviento-Borbe & Joseph H. Massey & Michele L. Reba, 2021. "Assessing Seasonal Methane and Nitrous Oxide Emissions from Furrow-Irrigated Rice with Cover Crops," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    15. Subash Dahal & Dorcas Franklin & Anish Subedi & Miguel Cabrera & Dennis Hancock & Kishan Mahmud & Laura Ney & Cheolwoo Park & Deepak Mishra, 2020. "Strategic Grazing in Beef-Pastures for Improved Soil Health and Reduced Runoff-Nitrate-A Step towards Sustainability," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    16. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Lin, Kuan-Ting & Pan, Shu-Yuan & Yuan, Mei-Hua & Zhang, Yi-Ting & Guo, Horng-Yuh, 2025. "Synergies between rice production security and soil-related ecosystem services: From field observations to policy implementations," Agricultural Systems, Elsevier, vol. 224(C).
    18. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    19. Bryan S. Griffiths & Jack Faber & Jaap Bloem, 2018. "Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    20. Alberto Canarini & Lucia Fuchslueger & Jörg Schnecker & Dennis Metze & Daniel B. Nelson & Ansgar Kahmen & Margarete Watzka & Erich M. Pötsch & Andreas Schaumberger & Michael Bahn & Andreas Richter, 2024. "Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13278-:d:692006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.