IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10942-d648326.html
   My bibliography  Save this article

Land Use Land Cover Changes and Their Effects on Surface Air Temperature in Myanmar and Thailand

Author

Listed:
  • Khun La Yaung

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10140, Thailand)

  • Amnat Chidthaisong

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10140, Thailand)

  • Atsamon Limsakul

    (Environmental Research and Training Center, Department of Environmental Quality Promotion Technopolis, Klong 5, Klong Luang, Pathumthani 12120, Thailand)

  • Pariwate Varnakovida

    (KMUTT Geospatial Engineering and Innovation Center (KGEO), Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Can Trong Nguyen

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10140, Thailand)

Abstract

Land use land cover (LULC) change is one of the main drivers contributing to global climate change. It alters surface hydrology and energy balance between the land surface and atmosphere. However, its impacts on surface air temperature have not been well understood in a dynamic region of LULC changes like Southeast Asia (SEA). This study quantitatively examined the contribution of LULC changes to temperature trends in Myanmar and Thailand as the typical parts of SEA during 1990–2019 using the “observation minus reanalysis” (OMR) method. Overall, the average maximum, mean, and minimum temperatures obtained from OMR trends indicate significant warming trends of 0.17 °C/10a, 0.20 °C/10a, and 0.42 °C/10a, respectively. The rates of minimum temperature increase were larger than maximum and mean temperatures. The decreases of forest land and cropland, and the expansions of settlements land fractions were strongly correlated with the observed warming trends. It was found that the effects of forest land converted to settlement land on warming were higher than forest conversion to cropland. A comprehensive discussion on this study could provide scientific information for the future development of more sustainable land use planning to mitigate and adapt to climate change at the local and national levels.

Suggested Citation

  • Khun La Yaung & Amnat Chidthaisong & Atsamon Limsakul & Pariwate Varnakovida & Can Trong Nguyen, 2021. "Land Use Land Cover Changes and Their Effects on Surface Air Temperature in Myanmar and Thailand," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10942-:d:648326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.
    3. Jiayang Li & Xinqi Zheng & Chunxiao Zhang & Youmin Chen, 2018. "Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing–Tianjin–Hebei Region from 1990 to 2010," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    4. Can Trong Nguyen & Amnat Chidthaisong & Phan Kieu Diem & Lian-Zhi Huo, 2021. "A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8," Land, MDPI, vol. 10(3), pages 1-18, February.
    5. Nayak, Sridhara & Mandal, Manabottam, 2019. "Impact of land use and land cover changes on temperature trends over India," Land Use Policy, Elsevier, vol. 89(C).
    6. V. Durai & Rashmi Bhradwaj, 2014. "Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1229-1254, September.
    7. Fakhereh Alidoost & Alfred Stein & Zhongbo Su, 2019. "The use of bivariate copulas for bias correction of reanalysis air temperature data," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-22, May.
    8. Amit Sarkar, 2018. "Accuracy Assessment and Analysis of Land Use Land Cover Change Using Geoinformatics Technique in Raniganj Coalfield Area, India," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 11(1), pages 25-34, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaokang Su & Fang Wang & Demin Zhou & Hongwen Zhang, 2022. "Assessing the Spatial Variability of Daytime/Nighttime Extreme Heat Waves in Beijing under Different Land-Use during 2011–2020," Land, MDPI, vol. 11(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.
    2. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    3. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    6. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    7. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    8. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    9. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    10. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    11. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    12. Ivanize Silva & Rafael Santos & António Lopes & Virgínia Araújo, 2018. "Morphological Indices as Urban Planning Tools in Northeastern Brazil," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    13. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    14. Caixia Liu & Rui Xu & Kaiji Xu & Yiwen Lin & Yingui Cao, 2023. "Carbon Emission Effects of Land Use in Chaobai River Region of Beijing–Tianjin–Hebei, China," Land, MDPI, vol. 12(6), pages 1-23, June.
    15. Myeong Ja Kwak & Jong Kyu Lee & Sanghee Park & Yea Ji Lim & Handong Kim & Kyeong Nam Kim & Sun Mi Je & Chan Ryul Park & Su Young Woo, 2020. "Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    16. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    17. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    18. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    19. Maria Silva Dias & Juliana Dias & Leila Carvalho & Edmilson Freitas & Pedro Silva Dias, 2013. "Changes in extreme daily rainfall for São Paulo, Brazil," Climatic Change, Springer, vol. 116(3), pages 705-722, February.
    20. Chunxiao Zhang & Xinqi Zheng & Jiayang Li & Shuxian Wang & Weiming Xu, 2019. "Research in Meteorological Modeling Oriented Comprehensive Surface Complexity (CSC)," Sustainability, MDPI, vol. 11(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10942-:d:648326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.