IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10598-d642198.html
   My bibliography  Save this article

A Long-Term Ecological Vulnerability Analysis of the Tibetan Region of Natural Conditions and Ecological Protection Programs

Author

Listed:
  • Yunxiao Jiang

    (College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China
    Department of Geography, National University of Singapore, Singapore 117570, Singapore)

  • Yu Shi

    (College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China)

  • Rong Li

    (College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China)

  • Luo Guo

    (College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China)

Abstract

The combined impacts of drastic natural environment change and increasing human interference are making the uncertainty of the Tibetan Plateau’s ecological vulnerability the world’s largest. In this study, an ecological vulnerability index ( EVI ) of Tibet in the core area of the Tibetan Plateau was assessed using a selected set of ecological, social, and economic indicators and using a spatial principal component analysis (SPCA) to calculate their weights. The data included Landsat images and socio-economic data from 1990 to 2015 in five-year intervals. The results showed that the total EVI remained at a high vulnerability level, with drastic fluctuation from 1990 to 2000 (a peak in 1995, when there was a sudden increase in light vulnerability, which moved to extreme vulnerability in the next period), and minor fluctuations after 2000, gradually increasing from southeast to northwest. In addition, the spatial analysis showed a distinct positive correlation between the EVI and grassland area (0.33), land use degree (0.15), NDVI (0.14), livestock husbandry output, and a negative correlation in terms of desertification area. The artificial afforestation program (AAP) had a positive significant correlation with NDVI (R 2 = 0.88), preventing the environment from becoming more vulnerable. The results provide practical information and suggestions for planners to improve the land use degree in urban areas and the vegetation coverage in pastoral regions of the Tibetan Plateau based on the spatial–temporal heterogeneity patterns of the EVI of Tibet.

Suggested Citation

  • Yunxiao Jiang & Yu Shi & Rong Li & Luo Guo, 2021. "A Long-Term Ecological Vulnerability Analysis of the Tibetan Region of Natural Conditions and Ecological Protection Programs," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10598-:d:642198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiufen Li & Lining Song & Zunbo Xie & Tian Gao & Tingting Wang & Xiao Zheng & Jiang Liu & Limin Liu, 2021. "Assessment of Ecological Vulnerability on Northern Sand Prevention Belt of China Based on the Ecological Pressure–Sensibility–Resilience Model," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    2. Grazia Brunetta & Stefano Salata, 2019. "Mapping Urban Resilience for Spatial Planning—A First Attempt to Measure the Vulnerability of the System," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    3. Camille Leclerc & Franck Courchamp & Céline Bellard, 2020. "Future climate change vulnerability of endemic island mammals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    5. Shidong Liu & Jianjun Zhang & Jie Zhang & Zheng Li & Yuhuan Geng & Yiqiang Guo, 2021. "Assessing Controversial Desertification Prevention Policies in Ecologically Fragile and Deeply Impoverished Areas: A Case Study of Marginal Parts of the Taklimakan Desert, China," Land, MDPI, vol. 10(6), pages 1-22, June.
    6. Denis Maragno & Carlo Federico dall’Omo & Gianfranco Pozzer & Francesco Musco, 2021. "Multi-Risk Climate Mapping for the Adaptation of the Venice Metropolitan Area," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengyuan Zhao & Yunlong Zhang & Siqi Sun & Ting Li & Yihe Lü & Wei Jiang & Xing Wu, 2022. "Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    2. Chenyang Wu & Yichen Zhang & Jiquan Zhang & Yanan Chen & Chenyu Duan & Jiawei Qi & Zhongshuai Cheng & Zengkai Pan, 2022. "Comprehensive Evaluation of the Eco-Geological Environment in the Concentrated Mining Area of Mineral Resources," Sustainability, MDPI, vol. 14(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Salata & Bertan Arslan, 2022. "Designing with Ecosystem Modelling: The Sponge District Application in İzmir, Turkey," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    2. Grazia Brunetta & Ombretta Caldarice & Martino Faravelli, 2022. "Mainstreaming climate resilience: A GIS-based methodology to cope with cloudbursts in Turin, Italy," Environment and Planning B, , vol. 49(5), pages 1431-1447, June.
    3. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    4. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    5. Grazia Brunetta & Alessandra Faggian & Ombretta Caldarice, 2021. "Bridging the Gap: The Measure of Urban Resilience," Sustainability, MDPI, vol. 13(3), pages 1-4, January.
    6. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Mathias Schaefer & Nguyen Xuan Thinh & Stefan Greiving, 2020. "How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic," Sustainability, MDPI, vol. 12(2), pages 1-30, January.
    8. Yuangang Li & Maohua Sun & Guanghui Yuan & Yujing Liu, 2019. "Evaluation Methods of Water Environment Safety and Their Application to the Three Northeast Provinces of China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    9. Stefano Salata & Silvia Ronchi & Carolina Giaimo & Andrea Arcidiacono & Giulio Gabriele Pantaloni, 2021. "Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy)," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Carlotta Rodriquez & José Manuel Mendes & Xavier Romão, 2022. "Identifying the Importance of Disaster Resilience Dimensions across Different Countries Using the Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    11. Karolina Dmochowska-Dudek & Marcin Wójcik, 2022. "Socio-Economic Resilience of Poland’s Lignite Regions," Energies, MDPI, vol. 15(14), pages 1-18, July.
    12. Saeed Alqadhi & Javed Mallick & Swapan Talukdar & Mohd. Ahmed & Roohul Abad Khan & Showmitra Kumar Sarkar & Atiqur Rahman, 2022. "Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 641-671, August.
    13. Sandra Mitrović & Nevena Vasiljević & Bojana Pjanović & Tijana Dabović, 2023. "Assessing Urban Resilience with Geodesign: A Case Study of Urban Landscape Planning in Belgrade, Serbia," Land, MDPI, vol. 12(10), pages 1-22, October.
    14. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    15. Jing Gong & Hongyan Du & Zhi Wang, 2022. "Analysis of the Influences of Ecological Compensation Projects on Transfer Employment of Rural Labor from the Perspective of Capability," Land, MDPI, vol. 11(9), pages 1-14, September.
    16. Rosario Sommella & Libera D’Alessandro, 2021. "Retail Policies and Urban Change in Naples City Center: Challenges to Resilience and Sustainability from a Mediterranean City," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    17. Danial Mohabat Doost & Alessandra Buffa & Grazia Brunetta & Stefano Salata & Guglielmina Mutani, 2020. "Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    18. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    19. Stefano Salata & Sila Ozkavaf-Senalp & Koray Velibeyoğlu & Zeynep Elburz, 2022. "Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area," Land, MDPI, vol. 11(3), pages 1-20, March.
    20. Zhengyuan Zhao & Yunlong Zhang & Siqi Sun & Ting Li & Yihe Lü & Wei Jiang & Xing Wu, 2022. "Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework," Sustainability, MDPI, vol. 14(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10598-:d:642198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.