IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9155-d615103.html
   My bibliography  Save this article

Trade-Offs and Synergies of Ecosystem Services in the Pearl River Delta Urban Agglomeration

Author

Listed:
  • Qiongrui Zhang

    (School of Geographical Sciences, South China Normal University, Guangzhou 510631, China)

  • Xuechao Sun

    (School of Geographical Sciences, South China Normal University, Guangzhou 510631, China)

  • Kebin Zhang

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Zhenni Liao

    (School of Geographical Sciences, South China Normal University, Guangzhou 510631, China)

  • Songjun Xu

    (School of Geographical Sciences, South China Normal University, Guangzhou 510631, China)

Abstract

Since ecosystem services (ESs) have become effective tools for urban planning, spatiotemporal analysis of regional ESs and a deep understanding of the trade-offs among ESs are of great significance to regional governance. In this study, the spatial and temporal changes of four basic ESs were analyzed by combining statistical data with the InVEST model across the Pearl River Delta (PRD) urban agglomeration, China. The trade-offs among the related ESs were analyzed at the urban agglomeration scale and the city scale by correlation analysis. The results showed that: (1) Construction land increased by 6.78% from 2000 to 2018, while cultivated land and forest decreased. (2) Water yield showed an increasing trend, while carbon storage, food production, and habitat quality showed a downward trend from 2000 to 2018. (3) The four ecosystem services were significantly correlated, with synergies existing between water yield and food production, and between habitat quality and carbon storage, while other relationships are trade-offs. What is more, the scale has little influence on the direction of ES trade-off or synergy but influences the degree of the relationship. This empirical evidence on ES relationships in urban agglomerations can provide a reference for the sustainable development of ESs and efficient management of urban agglomerations.

Suggested Citation

  • Qiongrui Zhang & Xuechao Sun & Kebin Zhang & Zhenni Liao & Songjun Xu, 2021. "Trade-Offs and Synergies of Ecosystem Services in the Pearl River Delta Urban Agglomeration," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9155-:d:615103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chelsie L. Romulo & Stephen Posner & Stella Cousins & Jenn Hoyle Fair & Drew E. Bennett & Heidi Huber-Stearns & Ryan C. Richards & Robert I. McDonald, 2018. "Global state and potential scope of investments in watershed services for large cities," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    3. Wenjing Wang & Tong Wu & Yuanzheng Li & Shilin Xie & Baolong Han & Hua Zheng & Zhiyun Ouyang, 2020. "Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    4. Wang, Yi-Chung & Lin, Jiunn-Cheng, 2012. "Air quality enhancement zones in Taiwan: A carbon reduction benefit assessment," Forest Policy and Economics, Elsevier, vol. 23(C), pages 40-45.
    5. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Yang Bai & Christina P. Wong & Bo Jiang & Alice C. Hughes & Min Wang & Qing Wang, 2018. "Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    2. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    3. Zuzheng Li & Xiaoqin Cheng & Hairong Han, 2020. "Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    4. Zhang, Yingjie & Zhang, Tianzheng & Zeng, Yingxiang & Cheng, Baodong & Li, Hongxun, 2021. "Designating National Forest Cities in China: Does the policy improve the urban living environment?," Forest Policy and Economics, Elsevier, vol. 125(C).
    5. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    6. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    7. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    8. Mengzhu Liu & Leilei Min & Jingjing Zhao & Yanjun Shen & Hongwei Pei & Hongjuan Zhang & Yali Li, 2021. "The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    9. Hari Prasad Sharma & Bhagawat Rimal & Mingxia Zhang & Sandhya Sharma & Laxman Prasad Poudyal & Sujan Maharjan & Ripu Kunwar & Prativa Kaspal & Namrata Bhandari & Laxmi Baral & Sujita Dhakal & Ashish T, 2020. "Potential Distribution of the Critically Endangered Chinese Pangolin ( Manis pentadactyla ) in Different Land Covers of Nepal: Implications for Conservation," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    10. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    11. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    12. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    13. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).
    14. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    15. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    16. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    17. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    18. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    19. Junran Dong & Desheng Wu, 2020. "An Evaluation of the Impact of Ecological Compensation on the Cross-Section Efficiency Using SFA and DEA: A Case Study of Xin’an River Basin," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    20. Qindong Fan & Xiaoyu Yang & Chenming Zhang, 2022. "A Review of Ecosystem Services Research Focusing on China against the Background of Urbanization," IJERPH, MDPI, vol. 19(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9155-:d:615103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.