IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p266-d470478.html
   My bibliography  Save this article

Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning

Author

Listed:
  • Jiayu Qin

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100191, China)

  • Gang Mei

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100191, China)

  • Lei Xiao

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100191, China)

Abstract

Traffic congestion is becoming a critical problem in urban traffic planning. Intelligent transportation systems can help expand the capacity of urban roads to alleviate traffic congestion. As a key concept in intelligent transportation systems, urban traffic networks, especially dynamic traffic networks, can serve as potential solutions for traffic congestion, based on the complex network theory. In this paper, we build a traffic flow network model to investigate traffic congestion problems through taxi GPS trajectories. Moreover, to verify the effectiveness of the traffic flow network, an actual case of identifying the congestion areas is considered. The results indicate that the traffic flow network is reliable. Finally, several key problems related to traffic flow networks are discussed. The proposed traffic flow network can provide a methodological reference for traffic planning, especially to solve traffic congestion problems.

Suggested Citation

  • Jiayu Qin & Gang Mei & Lei Xiao, 2020. "Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:266-:d:470478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    2. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2008. "Dynamic urban traffic flow behavior on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 653-660.
    3. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    4. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    5. Zhang, Shen & Tang, Jinjun & Wang, Haixiao & Wang, Yinhai & An, Shi, 2017. "Revealing intra-urban travel patterns and service ranges from taxi trajectories," Journal of Transport Geography, Elsevier, vol. 61(C), pages 72-86.
    6. Lämmer, Stefan & Gehlsen, Björn & Helbing, Dirk, 2006. "Scaling laws in the spatial structure of urban road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 89-95.
    7. Dong Liu & Yun Jing & Baofang Chang, 2016. "Identifying influential nodes in complex networks based on expansion factor," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(09), pages 1-16, September.
    8. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueting Zhao & Liwei Hu & Xingzhong Wang & Jiabao Wu, 2022. "Study on Identification and Prevention of Traffic Congestion Zones Considering Resilience-Vulnerability of Urban Transportation Systems," Sustainability, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    3. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    4. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    5. Tsiotas, Dimitrios, 2021. "Drawing indicators of economic performance from network topology: The case of the interregional road transportation in Greece," Research in Transportation Economics, Elsevier, vol. 90(C).
    6. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    7. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    8. Marc Barthelemy, 2017. "From paths to blocks: New measures for street patterns," Environment and Planning B, , vol. 44(2), pages 256-271, March.
    9. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    10. Merchán, Daniel & Winkenbach, Matthias & Snoeck, André, 2020. "Quantifying the impact of urban road networks on the efficiency of local trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 38-62.
    11. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    12. Lee, Byoung-Hwa & Jung, Woo-Sung, 2018. "Analysis on the urban street network of Korea: Connections between topology and meta-information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 15-25.
    13. Malang, Kanokwan & Wang, Shuliang & Phaphuangwittayakul, Aniwat & Lv, Yuanyuan & Yuan, Hanning & Zhang, Xiuzhen, 2020. "Identifying influential nodes of global terrorism network: A comparison for skeleton network extraction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    15. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    16. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Bono, Flavio & Gutiérrez, Eugenio & Poljansek, Karmen, 2010. "Road traffic: A case study of flow and path-dependency in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5287-5297.
    18. Xu, Mingtao & Ye, Zhirui & Shan, Xiaofeng, 2016. "Modeling, analysis, and simulation of the co-development of road networks and vehicle ownership," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 417-428.
    19. Sheng, Jinfang & Dai, Jinying & Wang, Bin & Duan, Guihua & Long, Jun & Zhang, Junkai & Guan, Kerong & Hu, Sheng & Chen, Long & Guan, Wanghao, 2020. "Identifying influential nodes in complex networks based on global and local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    20. Yuji Yoshimura & Paolo Santi & Juan Murillo Arias & Siqi Zheng & Carlo Ratti, 2021. "Spatial clustering: Influence of urban street networks on retail sales volumes," Environment and Planning B, , vol. 48(7), pages 1926-1942, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:266-:d:470478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.