IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3537-d350628.html
   My bibliography  Save this article

Investigation of Sinkhole Formation with Human Influence: A Case Study from Wink Sink in Winkler County, Texas

Author

Listed:
  • Shannon English

    (Department of Geosciences, University of Texas - Permian Basin, Odessa, TX 79762, USA)

  • Joonghyeok Heo

    (Department of Geosciences, University of Texas - Permian Basin, Odessa, TX 79762, USA)

  • Jaewoong Won

    (Department of Real Estate, Graduate School of Tourism, Kyung Hee University, Seoul 02447, Korea)

Abstract

The formation of sinkholes in Winkler County, Texas is concerning due to the amount of oil and gas infrastructure and the potential for catastrophic losses. Evidences of new and potential sinkholes have been documented, and determining the cause of these sinkholes is paramount to mitigate the devastating consequences thereof. Studies have shown that the Wink sinkholes result from both natural and anthropogenic influences. Data depicting land-cover changes, alterations in the hydrologic systems, climate changes, and oil and gas activity were analyzed in an effort to better understand the link between these processes and sinkhole formation. Results indicate that the combination of these processes lead to the current state. Land cover changes were highest in shrub versus grasses, undeveloped to developed and croplands. Rises in temperature and a decrease in precipitation indicate a shift towards a more arid climate. Changes to the hydraulic system are a direct result of these land cover changes while the groundwater quality depicts an environment prone to dissolution. Historical oil and gas activities have created pathways of meteoric water infiltration to the underlying limestone and evaporite formation. The combination of these processes create an environment that accelerates sinkhole formations. Understanding these processes allows for the development and implementation of better land practices, better groundwater protections, and the need for monitoring and maintaining aging oil and gas infrastructure.

Suggested Citation

  • Shannon English & Joonghyeok Heo & Jaewoong Won, 2020. "Investigation of Sinkhole Formation with Human Influence: A Case Study from Wink Sink in Winkler County, Texas," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3537-:d:350628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel J. Rozell & Sheldon J. Reaven, 2012. "Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1382-1393, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Lozano & Joonghyeok Heo & Mijin Seo, 2021. "Historical Assessments of Inorganic Pollutants in the Sinkhole Region of Winkler County, Texas, USA," Sustainability, MDPI, vol. 13(13), pages 1-13, July.
    2. Derek Haskell & Joonghyeok Heo & Joonkyu Park & Chao Dong, 2022. "Hydrogeochemical Evaluation of Groundwater Quality Parameters for Ogallala Aquifer in the Southern High Plains Region, USA," IJERPH, MDPI, vol. 19(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noura Abualfaraj & Patrick L. Gurian & Mira S. Olson, 2018. "Assessing Residential Exposure Risk from Spills of Flowback Water from Marcellus Shale Hydraulic Fracturing Activity," IJERPH, MDPI, vol. 15(4), pages 1-25, April.
    2. Klaudia Wilk, 2019. "Experimental and Simulation Studies of Energized Fracturing Fluid Efficiency in Tight Gas Formations," Energies, MDPI, vol. 12(23), pages 1-17, November.
    3. Zuo, Na & Schieffer, Jack & Buck, Steven, 2019. "The effect of the oil and gas boom on schooling decisions in the U.S," Resource and Energy Economics, Elsevier, vol. 55(C), pages 1-23.
    4. Lenhard, L.G. & Andersen, S.M. & Coimbra-Araújo, C.H., 2018. "Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 56-69.
    5. Noura Abualfaraj & Patrick L. Gurian & Mira S. Olson, 2018. "Frequency Analysis of Failure Scenarios from Shale Gas Development," IJERPH, MDPI, vol. 15(5), pages 1-13, April.
    6. Karen Maguire & John V. Winters, 2017. "Energy Boom and Gloom? Local Effects of Oil and Natural Gas Drilling on Subjective Well†Being," Growth and Change, Wiley Blackwell, vol. 48(4), pages 590-610, December.
    7. Malin, Stephanie A. & Mayer, Adam & Crooks, James L. & McKenzie, Lisa & Peel, Jennifer L. & Adgate, John L., 2019. "Putting on partisan glasses: Political identity, quality of life, and oil and gas production in Colorado," Energy Policy, Elsevier, vol. 129(C), pages 738-748.
    8. Yulong Yang & Han Liu & Weixuan Mao & Zhaojie Song & Haizhu Wang, 2020. "Study on the Impact Pressure of Swirling-Round Supercritical CO 2 Jet Flow and Its Influencing Factors," Energies, MDPI, vol. 14(1), pages 1-15, December.
    9. Ilia Murtazashvili & Ennio E. Piano, 2019. "Governance of shale gas development: Insights from the Bloomington school of institutional analysis," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 32(2), pages 159-179, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3537-:d:350628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.