IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p652-d309339.html
   My bibliography  Save this article

Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

Author

Listed:
  • Ángel Agüero

    (Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain)

  • Diego Lascano

    (Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain)

  • David Garcia-Sanoguera

    (Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain)

  • Octavio Fenollar

    (Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain)

  • Sergio Torres-Giner

    (Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain)

Abstract

This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax ( Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.

Suggested Citation

  • Ángel Agüero & Diego Lascano & David Garcia-Sanoguera & Octavio Fenollar & Sergio Torres-Giner, 2020. "Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:652-:d:309339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caroline Fritsch & Andreas Staebler & Anton Happel & Miguel Angel Cubero Márquez & Ingrid Aguiló-Aguayo & Maribel Abadias & Miriam Gallur & Ilaria Maria Cigognini & Angela Montanari & Maria Jose López, 2017. "Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review," Sustainability, MDPI, vol. 9(8), pages 1-46, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    2. Jiří Souček & Algirdas Jasinskas, 2020. "Assessment of the Use of Potatoes as a Binder in Flax Heating Pellets," Sustainability, MDPI, vol. 12(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Berta de los & Medina, Eduardo & Brenes, Manuel & Aguado, Ana & García, Pedro & Romero, Concepción, 2020. "Chemical composition of table olive wastewater and its relationship with the bio-fortifying capacity of tomato (Solanum lycopersicum L.) plants," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    3. Yingying Xing & Xiaoli Niu & Ning Wang & Wenting Jiang & Yaguang Gao & Xiukang Wang, 2020. "The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    4. Muhammad Azri Amran & Kishneth Palaniveloo & Rosmadi Fauzi & Nurulhuda Mohd Satar & Taznim Begam Mohd Mohidin & Gokula Mohan & Shariza Abdul Razak & Mirushan Arunasalam & Thilahgavani Nagappan & Jaya , 2021. "Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques," Sustainability, MDPI, vol. 13(20), pages 1-28, October.
    5. Patrícia V. Almeida & Rafaela P. Rodrigues & Leonor M. Teixeira & Andreia F. Santos & Rui C. Martins & Margarida J. Quina, 2021. "Bioenergy Production through Mono and Co-Digestion of Tomato Residues," Energies, MDPI, vol. 14(17), pages 1-16, September.
    6. Ramón Verduzco-Oliva & Janet Alejandra Gutierrez-Uribe, 2020. "Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    7. Diego Alejandro Salinas-Velandia & Felipe Romero-Perdomo & Stephanie Numa-Vergel & Edwin Villagrán & Pilar Donado-Godoy & Julio Ricardo Galindo-Pacheco, 2022. "Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies," IJERPH, MDPI, vol. 19(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:652-:d:309339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.