IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10544-d463314.html
   My bibliography  Save this article

Carbonization Durability of Two Generations of Recycled Coarse Aggregate Concrete with Effect of Chloride Ion Corrosion

Author

Listed:
  • Chunhong Chen

    (Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
    Department of Civil Engineering, Changzhou University, Changzhou 213164, China)

  • Ronggui Liu

    (Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China)

  • Pinghua Zhu

    (Department of Civil Engineering, Changzhou University, Changzhou 213164, China)

  • Hui Liu

    (Department of Civil Engineering, Changzhou University, Changzhou 213164, China)

  • Xinjie Wang

    (Department of Civil Engineering, Changzhou University, Changzhou 213164, China)

Abstract

Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of recycled concrete coarse aggregate (RCA) with the increasing recycling cycles was analyzed, and carbonation depth, compressive strength and the porosity of RAC were measured before and after chloride ion corrosion. The results show that the effect of chloride ion corrosion negatively affected the carbonation resistance of RAC, and the negative effect was more severe with the increasing recycling cycles of RCA. Chloride ion corrosion led to a decrease in compressive strength, while an increase in carbonation depth and the porosity of RAC. The equation of concrete total porosity and carbonation depth was established, which could effectively judge the deterioration of carbonation resistance of RAC.

Suggested Citation

  • Chunhong Chen & Ronggui Liu & Pinghua Zhu & Hui Liu & Xinjie Wang, 2020. "Carbonization Durability of Two Generations of Recycled Coarse Aggregate Concrete with Effect of Chloride Ion Corrosion," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10544-:d:463314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    2. Guillermo L. Taboada & Isabel Seruca & Cristina Sousa & Ángeles Pereira, 2020. "Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    3. Namho Kim & Jeonghyeon Kim & Sungchul Yang, 2016. "Mechanical Strength Properties of RCA Concrete Made by a Modified EMV Method," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
    4. Tereza Pavlů & Vladimír Kočí & Petr Hájek, 2019. "Environmental Assessment of Two Use Cycles of Recycled Aggregate Concrete," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbert Sinduja Joseph & Thamilselvi Pachiappan & Siva Avudaiappan & Nelson Maureira-Carsalade & Ángel Roco-Videla & Pablo Guindos & Pablo F. Parra, 2023. "A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete," Sustainability, MDPI, vol. 15(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Santana Rangel & Mayara Amario & Marco Pepe & Enzo Martinelli & Romildo Dias Toledo Filho, 2020. "Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    2. Simone Rusci & Diego Altafini & Valerio Di Pinto, 2021. "Urban Demolition: Application of Blight Elimination Programs and Flood Buyout Programs to the Italian Case," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    3. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    4. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    5. Georgios F. Banias & Christos Karkanias & Maria Batsioula & Lefteris D. Melas & Apostolos E. Malamakis & Dimitris Geroliolios & Stamatia Skoutida & Xenofon Spiliotis, 2022. "Environmental Assessment of Alternative Strategies for the Management of Construction and Demolition Waste: A Life Cycle Approach," Sustainability, MDPI, vol. 14(15), pages 1-12, August.
    6. Paweł Dziekański & Adam Wyszkowski & Piotr Prus & Andrzej Pawlik & Mansoor Maitah & Magdalena Wrońska, 2022. "Zero Waste as a Determinant of Shaping Green Economy Processes on the Example of Communes of Eastern Poland in 2010–2020," Energies, MDPI, vol. 16(1), pages 1-24, December.
    7. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    8. Piotr Misztal & Paweł Dziekański, 2023. "Green Economy and Waste Management as Determinants of Modeling Green Capital of Districts in Poland in 2010–2020," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    9. Najib N. Gerges & Camille A. Issa & Elias Sleiman & Sara Aintrazi & Jad Saadeddine & Remi Abboud & Marc Antoun, 2022. "Eco-Friendly Optimum Structural Concrete Mix Design," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    10. Carlos D. A. Loureiro & Caroline F. N. Moura & Mafalda Rodrigues & Fernando C. G. Martinho & Hugo M. R. D. Silva & Joel R. M. Oliveira, 2022. "Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    11. Rocsana Bucea-Manea-Țoniș & Teodora Zecheru, 2022. "Untapped Aspects of Waste Management versus Green Deal Objectives," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    12. Sungchul Yang & Hwalwoong Lee, 2017. "Structural Performance of Reinforced RCA Concrete Beams Made by a Modified EMV Method," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    13. Yong Liu & Yang Wang & Mengmeng Zhou & Jiandong Huang, 2023. "Improvement of Computational Efficiency and Accuracy by Firefly Algorithm and Random Forest for Compressive Strength Modeling of Recycled Concrete," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10544-:d:463314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.