IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7696-d415077.html
   My bibliography  Save this article

Using Patent Technology Networks to Observe Neurocomputing Technology Hotspots and Development Trends

Author

Listed:
  • Shu-Hao Chang

    (Science and Technology Policy Research and Information Center National Applied Research Laboratories, Taipei 10636, Taiwan)

  • Chin-Yuan Fan

    (Science and Technology Policy Research and Information Center National Applied Research Laboratories, Taipei 10636, Taiwan)

Abstract

In recent years, development in the fields of big data and artificial intelligence has given rise to interest among scholars in neurocomputing-related applications. Neurocomputing has relatively widespread applications because it is a critical technology in numerous fields. However, most studies on neurocomputing have focused on improving related algorithms or application fields; they have failed to highlight the main technology hotspots and development trends from a comprehensive viewpoint. To fill the research gap, this study adopts a new viewpoint and employs technological fields as its main subject. Neurocomputing patents are subjected to network analysis to construct a neurocomputing technology hotspot. The results reveal that the neurocomputing technology hotspots are algorithms, methods or devices for reading or recognizing printed or written characters or patterns, and digital storage characterized by the use of particular electric or magnetic storage elements. Furthermore, the technology hotspots are discovered to not be clustered around particular fields but, rather, are multidisciplinary. The applications that combine neurocomputing with digital storage are currently undergoing the most extensive development. Finally, patentee analysis reveal that neurocomputing technology is mainly being developed by information technology corporations, thereby indicating the market development potential of neurocomputing technology. This study constructs a technology hotspot network model to elucidate the trend in development of neurocomputing technology, and the findings may serve as a reference for industries planning to promote emerging technologies.

Suggested Citation

  • Shu-Hao Chang & Chin-Yuan Fan, 2020. "Using Patent Technology Networks to Observe Neurocomputing Technology Hotspots and Development Trends," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7696-:d:415077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marisela Rodríguez-Salvador & Rosa María Rio-Belver & Gaizka Garechana-Anacabe, 2017. "Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
    2. Hanlin You & Mengjun Li & Keith W. Hipel & Jiang Jiang & Bingfeng Ge & Hante Duan, 2017. "Development trend forecasting for coherent light generator technology based on patent citation network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 297-315, April.
    3. Alex Fabianne de Paulo & Evandro Marcos Saidel Ribeiro & Geciane Silveira Porto, 2018. "Mapping countries cooperation networks in photovoltaic technology development based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 667-686, November.
    4. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    5. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    6. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    7. Milad Dehghani & Rosa Maria Dangelico, 2018. "Smart wearable technologies: state of the art and evolution over time through patent analysis and clustering," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 22(4), pages 293-313.
    8. Gohar Feroz Khan & Jacob Wood, 2015. "Information technology management domain: emerging themes and keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 959-972, November.
    9. Ilwon Seo & Jung Won Sonn, 2019. "The persistence of inter‐regional hierarchy in technology transfer networks: An analysis of Chinese patent licensing data," Growth and Change, Wiley Blackwell, vol. 50(1), pages 145-163, March.
    10. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    11. Alexander Donges & Felix Selgert, 2019. "Technology transfer via foreign patents in Germany, 1843–77," Economic History Review, Economic History Society, vol. 72(1), pages 182-208, February.
    12. Yuqing Fang, 2015. "Visualizing the structure and the evolving of digital medicine: a scientometrics review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 5-21, October.
    13. Nordensvard, Johan & Zhou, Yuan & Zhang, Xiao, 2018. "Innovation core, innovation semi-periphery and technology transfer: The case of wind energy patents," Energy Policy, Elsevier, vol. 120(C), pages 213-227.
    14. Ming Li & Hui Li, 2020. "Application of deep neural network and deep reinforcement learning in wireless communication," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruifeng Hu & Weiqiao Xu, 2022. "Exploring the Technological Changes of Green Agriculture in China: Evidence from Patent Data (1998–2021)," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    2. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    4. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    2. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    3. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    4. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Zhijun Feng & Hechang Cai & Wen Zhou, 2020. "Structural Characteristics and Spatial Patterns of the Technology Transfer Network in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 12(6), pages 1-28, March.
    6. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    7. Dušan Marković, 2018. "RETRACTED ARTICLE: Appraisal of Science and Economic Factors on Total Number of Granted Patents," Networks and Spatial Economics, Springer, vol. 18(4), pages 1019-1026, December.
    8. Woocheol Kim & Gohar Feroz Khan & Jacob Wood & Muhammad Tariq Mahmood, 2016. "Employee Engagement for Sustainable Organizations: Keyword Analysis Using Social Network Analysis and Burst Detection Approach," Sustainability, MDPI, vol. 8(7), pages 1-11, July.
    9. Losacker, Sebastian, 2022. "‘License to green’: Regional patent licensing networks and green technology diffusion in China," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Chung, Jaemin & Ko, Namuk & Yoon, Janghyeok, 2021. "Inventor group identification approach for selecting university-industry collaboration partners," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    11. René Lezama-Nicolás & Marisela Rodríguez-Salvador & Rosa Río-Belver & Iñaki Bildosola, 2018. "A bibliometric method for assessing technological maturity: the case of additive manufacturing," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1425-1452, December.
    12. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    13. So Yoon Yoon & Su Jung Jee & So Young Sohn, 2021. "Mapping and identifying technological coopetition: a multi-level approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5797-5817, July.
    14. Jihong Chen & Kai Zhang & Yuan Zhou & Yufei Liu & Lingfeng Li & Zheng Chen & Li Yin, 2019. "Exploring the Development of Research, Technology and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning," Sustainability, MDPI, vol. 11(12), pages 1-38, June.
    15. José Lobo & Deborah Strumsky, 2019. "Sources of inventive novelty: two patent classification schemas, same story," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 19-37, July.
    16. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.
    17. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    18. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    19. Bernardo S Buarque & Ronald B Davies & Ryan M Hynes & Dieter F Kogler, 2020. "OK Computer: the creation and integration of AI in Europe," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 175-192.
    20. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7696-:d:415077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.