IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6893-d403661.html
   My bibliography  Save this article

Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard

Author

Listed:
  • Anna Vatsanidou

    (Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece)

  • Spyros Fountas

    (Department of Natural Resources Management and Rural Environment, Agricultural University of Athens, 11855 Athens, Greece)

  • Vasileios Liakos

    (Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA)

  • George Nanos

    (Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece)

  • Nikolaos Katsoulas

    (Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece)

  • Theofanis Gemtos

    (Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece)

Abstract

Precision Agriculture (PA) is a crop site-specific management system that aims for sustainability, adopting agricultural practices more friendly to the environment, like the variable rate application (VRA) technique. Many studies have dealt with the effectiveness of VRA to reduce nitrogen (N) fertilizer, while achieving increased profit and productivity. However, only limited attention was given to VRA’s environmental impact. In this study an International Organization for Standardization (ISO) based Life Cycle Assessment (LCA) performed to identify the environmental effects of N VRA on a small pear orchard, compared to the conventional uniform application. A Cradle to Gate system with a functional unit (FU) of 1 kg of pears was analyzed including high quality primary data of two productive years, including also the non-productive years, as well as all the emissions during pear growing and the supply chains of all inputs, projecting them to the lifespan of the orchard. A methodology was adopted, modelling individual years and averaging over the orchard’s lifetime. Results showed that Climate change, Water scarcity, Fossil fuels and Particulate formation were the most contributing impact categories to the overall environmental impact of the pear orchard lifespan, where climate change and particulates were largely determined by CO 2 , N 2 O, and NH 3 emissions to the air from fertilizer production and application, and as CO 2 from tractor use. Concerning fertilization practice, when VRA was combined with a high yield year, this resulted in significantly reduced environmental impact. LCA evaluating an alternative fertilizer management system in a Greek pear orchard revealed the environmental impact reduction potential of that system.

Suggested Citation

  • Anna Vatsanidou & Spyros Fountas & Vasileios Liakos & George Nanos & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6893-:d:403661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/6893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/6893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    2. English, Burton C. & Mahajanashetti, S.B. & Roberts, Roland K., 1999. "Economic And Environmental Benefits Of Variable Rate Application Of Nitrogen To Corn Fields: Role Of Variability And Weather," 1999 Annual meeting, August 8-11, Nashville, TN 21533, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Frits K. Van Evert & Daniel Gaitán-Cremaschi & Spyros Fountas & Corné Kempenaar, 2017. "Can Precision Agriculture Increase the Profitability and Sustainability of the Production of Potatoes and Olives?," Sustainability, MDPI, vol. 9(10), pages 1-24, October.
    4. Michal Kulak & Thomas Nemecek & Emmanuel Frossard & Gérard Gaillard, 2013. "How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?," Sustainability, MDPI, vol. 5(9), pages 1-22, September.
    5. Athanasios T. Balafoutis & Stefanos Koundouras & Evangelos Anastasiou & Spyros Fountas & Konstantinos Arvanitis, 2017. "Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Tran Thanh Liem & Yukihiro Tashiro & Pham Van Trong Tinh & Kenji Sakai, 2022. "Reduction in Greenhouse Gas Emission from Seedless Lime Cultivation Using Organic Fertilizer in a Province in Vietnam Mekong Delta Region," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    2. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    3. Qin Zhang & Yutao Peng & Jingxin Wang & Longcheng Li & Danjun Yao & Aihua Zhang & Wenhua Wang & Shengjian Kuang & Heng Liao & Qing Zhu & Bangxi Zhang, 2021. "Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    4. Haoran Bu & Siyao Yu & Wancheng Dong & Lixin Zhang & Yuanqing Xia, 2022. "Analysis of the Effect of Bivariate Fertilizer Discharger Control Sequence on Fertilizer Discharge Performance," Agriculture, MDPI, vol. 12(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Sarri & Stefania Lombardo & Andrea Pagliai & Carolina Perna & Riccardo Lisci & Valentina De Pascale & Marco Rimediotti & Guido Cencini & Marco Vieri, 2020. "Smart Farming Introduction in Wine Farms: A Systematic Review and a New Proposal," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    2. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    3. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    4. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    5. Popp, Jennie S. Hughes & Griffin, Terry W., 2000. "Profitability Of Variable Rate Phosphorus In A Two Crop Rotation," 2000 Annual meeting, July 30-August 2, Tampa, FL 21806, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    7. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    8. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    9. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    10. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    11. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    12. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    13. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    14. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    15. Melese Baye Hailu & S. K. Mishra & Sanjay K. Jain, 2024. "Sediment yield modelling and prioritization of erosion-prone sub-basins in the Tekeze watershed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19855-19870, August.
    16. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    17. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.
    18. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    19. Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.
    20. Adamashvili Nino & Fiore Mariantonietta & Contò Francesco & La Sala Piermichele, 2020. "Ecosystem for Successful Agriculture. Collaborative Approach as a Driver for Agricultural Development," European Countryside, Sciendo, vol. 12(2), pages 242-256, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:6893-:d:403661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.