IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5617-d383642.html
   My bibliography  Save this article

Response of Soil Microbial Communities to Warming and Clipping in Alpine Meadows in Northern Tibet

Author

Listed:
  • Haorui Zhang

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of resources and environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shaowei Li

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Guangyu Zhang

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of resources and environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Gang Fu

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

In order to explore responses of soil microbial communities among different alpine meadows under warming and clipping, soil microorganisms of three alpine meadow sites (low altitude: 4313 m, alpine steppe meadow, 30°30′ N, 91°04′ E; mid-altitude: 4513 m, alpine steppe meadow, 30°31′ N, 91°04′ E; and high altitude: 4693, alpine Kobresia meadow, 30°32′ N, 91°03′ E) were measured using the phospholipid fatty acid (PLFA) method. Both warming and clipping significantly reduced PLFA content and changed the community composition of soil microbial taxa, which belong to bacterial and fungal communities in the alpine Kobresia meadow. Warming significantly reduced the soil total PLFA content by 36.1% and the content of soil fungi by 37.0%; the clipping significantly reduced the soil total PLFA content by 57.4%, the content of soil fungi by 49.9%, and the content of soil bacteria by 60.5% in the alpine Kobresia meadow. Only clipping changed the total fungal community composition at a low altitude. Neither clipping nor warming changed the microbial community composition at a moderate altitude. Soil temperature, soil moisture, and pH were the main factors affecting soil microbial communities. Therefore, the effects of warming and clipping on soil microbial communities in alpine meadows were related to grassland types and soil environmental conditions.

Suggested Citation

  • Haorui Zhang & Shaowei Li & Guangyu Zhang & Gang Fu, 2020. "Response of Soil Microbial Communities to Warming and Clipping in Alpine Meadows in Northern Tibet," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5617-:d:383642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jane Qiu, 2008. "China: The third pole," Nature, Nature, vol. 454(7203), pages 393-396, July.
    2. Jane Qiu, 2014. "Double threat for Tibet," Nature, Nature, vol. 512(7514), pages 240-241, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haidong Li & Yingkui Li & Yuanyun Gao & Changxin Zou & Shouguang Yan & Jixi Gao, 2016. "Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    2. Tshering Chonzom Bhutia, 2015. "The Fourth ‘Forum on the Development of Tibet’," China Report, , vol. 51(1), pages 66-75, February.
    3. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    4. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    5. Qianhan Wu & Kai Liu & Chunqiao Song & Jida Wang & Linghong Ke & Ronghua Ma & Wensong Zhang & Hang Pan & Xinyuan Deng, 2018. "Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    6. Xinjun He & Anyi Huang & Jianzhong Yan & Hong Zhou & Ya Wu & Liang Emlyn Yang & Basanta Paudel, 2023. "Smallholders’ climate change adaptation strategies on the eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 641-667, August.
    7. Wang, Weijun & Zhao, Xueyan & Cao, Jianjun & Li, Hua & Zhang, Qin, 2020. "Barriers and requirements to climate change adaptation of mountainous rural communities in developing countries: The case of the eastern Qinghai-Tibetan Plateau of China," Land Use Policy, Elsevier, vol. 95(C).
    8. Dongchuan Wang & Kangjian Wang & Zhiheng Wang & Hongkui Fan & Hua Chai & Hongyi Wang & Hui Long & Jianshe Gao & Jiacheng Xu, 2022. "Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    9. Munkhnasan Lamchin & Woo-Kyun Lee & Sonam Wangyel Wang, 2022. "Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole," Land, MDPI, vol. 11(12), pages 1-19, December.
    10. Zhenjie Dong & Lin Hou & Qi Ruan, 2023. "Effect of Elevation Gradient on Carbon Pools in a Juniperus przewalskii Kom. Forest in Qinghai, China," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    11. Bo Zhang & Wei Zhou, 2021. "Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China," Land, MDPI, vol. 10(3), pages 1-21, March.
    12. Junko Mochizuki & ZhongXiang Zhang, 2011. "Environmental Security and its Implications for China’s Foreign Relations," Working Papers 2011.30, Fondazione Eni Enrico Mattei.
    13. Xingchuan Gao & Tao Li & Xiaoshu Cao, 2019. "Spatial Fairness and Changes in Transport Infrastructure in the Qinghai-Tibet Plateau Area from 1976 to 2016," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    14. Yuhao Jiang & Baolin Li & Yecheng Yuan & Qingling Sun & Tao Zhang & Yan Liu & Ying Li & Rui Li & Fei Li, 2021. "Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    15. Nansha Sun & Qiong Chen & Fenggui Liu & Qiang Zhou & Wenxin He & Yuanyuan Guo, 2023. "Land Use Simulation and Landscape Ecological Risk Assessment on the Qinghai-Tibet Plateau," Land, MDPI, vol. 12(4), pages 1-14, April.
    16. Li Zhao & Mingxi Du & Wei Du & Jiahuan Guo & Ziyan Liao & Xiang Kang & Qiuyu Liu, 2022. "Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    17. Zhengyuan Zhao & Yunlong Zhang & Siqi Sun & Ting Li & Yihe Lü & Wei Jiang & Xing Wu, 2022. "Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    18. Virendra Bahadur Singh & A. K. Keshari & AL. Ramanathan, 2020. "Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul–Spiti valley, Western Himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6585-6603, October.
    19. Jianwei Bu & Ziyong Sun & Aiguo Zhou & Youning Xu & Rui Ma & Wenhao Wei & Meng Liu, 2016. "Heavy Metals in Surface Soils in the Upper Reaches of the Heihe River, Northeastern Tibetan Plateau, China," IJERPH, MDPI, vol. 13(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5617-:d:383642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.