IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3618-d244737.html
   My bibliography  Save this article

Reliability Analysis and Optimization of Cold Chain Distribution System for Fresh Agricultural Products

Author

Listed:
  • Jinghan Zhang

    (Graduate School of Logistics, Inha University, Incheon 22212, Korea
    School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Wujun Cao

    (School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Minyoung Park

    (Graduate School of Logistics, Inha University, Incheon 22212, Korea)

Abstract

In recent years, with the Chinese government’s emphasis on the development of the cold chain logistics market for fresh agricultural products, the rapid development of agricultural cold chain logistics has been promoted in many aspects. However, in the circulation of fresh agricultural products, there is still a serious problem of “broken chain” leading to a high corrosion rate. Therefore, this research has analyzed the uncertain factors affecting the cold chain distribution system based on fault tree model, and then transform it into Bayesian network to evaluate the reliability of the cold chain distribution system for fresh agricultural product, and identify the key factors affecting the reliability of the cold chain distribution system through calculated probability importance of each node. Then we have constructed nonlinear equations with the limit of the cost, based on reliability allocation method to improve the system reliability. Numerical examples are given to validate the proposed models. The optimization result shows that higher reliability value assigned to the factors with high probability importance is more conducive to the improvement of system reliability.

Suggested Citation

  • Jinghan Zhang & Wujun Cao & Minyoung Park, 2019. "Reliability Analysis and Optimization of Cold Chain Distribution System for Fresh Agricultural Products," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3618-:d:244737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    2. Athakorn Kengpol & Sopida Tuammee, 2016. "The development of a decision support framework for a quantitative risk assessment in multimodal green logistics: an empirical study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1020-1038, February.
    3. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemei Fan & Ziyue Nan & Yuanhang Ma & Yingdan Zhang & Fei Han, 2021. "Research on the Spatio-Temporal Impacts of Environmental Factors on the Fresh Agricultural Product Supply Chain and the Spatial Differentiation Issue—An Empirical Research on 31 Chinese Provinces," IJERPH, MDPI, vol. 18(22), pages 1-26, November.
    2. Minghua Dai & Guanwei Wang & Jiaqiu Wang & Yuhan Gao & Quanzhen Lu, 2023. "Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    3. Han Yan & Min-Ju Song & Hee-Yong Lee, 2021. "A Systematic Review of Factors Affecting Food Loss and Waste and Sustainable Mitigation Strategies: A Logistics Service Providers’ Perspective," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    4. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    2. Amin Gharehyakheh & Caroline C. Krejci & Jaime Cantu & K. Jamie Rogers, 2020. "A Multi-Objective Model for Sustainable Perishable Food Distribution Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    3. Prem Vrat & Rachita Gupta & Aman Bhatnagar & Devendra Kumar Pathak & Vijayta Fulzele, 2018. "Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 601-627, November.
    4. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    5. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    6. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    7. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    8. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    9. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    10. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.
    11. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    12. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    13. Graham, Stephanie & Graham, Byron & Holt, Diane, 2018. "The relationship between downstream environmental logistics practices and performance," International Journal of Production Economics, Elsevier, vol. 196(C), pages 356-365.
    14. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    15. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    16. Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Arvind Bhardwaj & Mohamed Rafik Noor Mohamed Qureshi & Nawaf Khan, 2022. "Leveraging the Dynamics of Food Supply Chains towards Avenues of Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    17. Aleksander Banasik & Argyris Kanellopoulos & G. D. H. Claassen & Jacqueline M. Bloemhof-Ruwaard & Jack G. A. J. Vorst, 2017. "Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization," Annals of Operations Research, Springer, vol. 250(2), pages 341-362, March.
    18. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    19. Magdalena Kowalska, 2022. "Conceptualization of Sustainable Marketing Tools among SME Managers in Selected Countries in Poland and Sri Lanka," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    20. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3618-:d:244737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.