IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p2972-d164956.html
   My bibliography  Save this article

An Approach to Study Groundwater Flow Field Evolution Time Scale Effects and Mechanisms

Author

Listed:
  • Dianlong Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, No. 20 Chegongzhuang Road, Beijing 100048, China
    Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 258 Zhonghua Street, Shijiazhuang 050800, China)

  • Guanghui Zhang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 258 Zhonghua Street, Shijiazhuang 050800, China)

  • Huimin Feng

    (College of Urban and Rural Construction, Shanxi Agricultural University, No. 1 Mingxian Road, Taigu 030801, China)

  • Jinzhe Wang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 258 Zhonghua Street, Shijiazhuang 050800, China)

  • Yanliang Tian

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 258 Zhonghua Street, Shijiazhuang 050800, China)

Abstract

The temporal scale effect is an important issue for groundwater system evolution research. The selection of an appropriate time scale will enhance the understanding of the characteristics and mechanisms of groundwater flow field evolution. In this study, a methodology was provided to analyze the groundwater system evolution, focusing on the choice of the suitable time step for identifying the distinct stages of evolution, characterized by different behavior linked to the management of the groundwater system. The evolution trend of the groundwater level in the center of the cone of depression at different time scales, combined with the F test and the groundwater system balance index ( R e ) categories, were used for the choice of the time step and the division of the evolution stages. Based on the transformed groundwater level time series using the selected best time step, the main factors controlling the groundwater evolution were assessed for the different stages. Our results show that the methodology can exactly identify the different important stages of the evolution, and they can be used to individually study these stages, which can help to reveal the mechanisms of the groundwater evolution more easily. Therefore, it is useful to obtain an increased knowledge of the regional groundwater dynamics.

Suggested Citation

  • Dianlong Wang & Guanghui Zhang & Huimin Feng & Jinzhe Wang & Yanliang Tian, 2018. "An Approach to Study Groundwater Flow Field Evolution Time Scale Effects and Mechanisms," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:2972-:d:164956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/2972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/2972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Yueqing & Mo, Xingguo & Cai, Yunlong & Li, Xiubin, 2005. "Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China," Agricultural Water Management, Elsevier, vol. 75(1), pages 38-53, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Zhai & Xianghui Gu & Yajing Feng & Dongqing Wu & Tengbo Wang, 2021. "Use of Remote Sensing to Assess the Water-Saving Effect of Winter Wheat Fallow," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    2. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    3. Liu, Suxia & Mo, Xingguo & Lin, Zhonghui & Xu, Yueqing & Ji, Jinjun & Wen, Gang & Richey, Jeff, 2010. "Crop yield responses to climate change in the Huang-Huai-Hai Plain of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1195-1209, August.
    4. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    5. Dan Yin & Longcang Shu & Xunhong Chen & Zhenlong Wang & Mokhatar Mohammed, 2011. "Assessment of Sustainable Yield of Karst Water in Huaibei, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 287-300, January.
    6. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    7. Martínez-Santos, P. & Martínez-Alfaro, P.E., 2010. "Estimating groundwater withdrawals in areas of intensive agricultural pumping in central Spain," Agricultural Water Management, Elsevier, vol. 98(1), pages 172-181, December.
    8. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    9. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    10. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Sarvin Zamanzad-Ghavidel & Sina Fazeli & Sevda Mozaffari & Reza Sobhani & Mohammad Azamathulla Hazi & Alireza Emadi, 2023. "Estimating of aqueduct water withdrawal via a wavelet-hybrid soft-computing approach under uniform and non-uniform climatic conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5283-5314, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:2972-:d:164956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.