IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2671-d160825.html
   My bibliography  Save this article

The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body

Author

Listed:
  • Ahmed Zeeshan

    (Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000, Pakistan)

  • Nouman Ijaz

    (Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000, Pakistan)

  • Tehseen Abbas

    (Department of Related Studies, Government College of Technology (TEVTA), Rawalpindi 46000, Pakistan)

  • Rahmat Ellahi

    (Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000, Pakistan
    Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521, USA)

Abstract

This study deals with the peristaltic transport of non-Newtonian Jeffrey fluid with uniformly distributed identical rigid particles in a rectangular duct. The effects of a magnetohydrodynamics bio-bi-phase flow are taken into account. The governing equations for mass and momentum are simplified using the fact that wavelength is much greater than the amplitude and small Reynolds number. A closed-form solution for velocity is obtained by means of the eigenfunction expansion method whereby pressure rise is numerically calculated. The results are graphically presented to observe the effects of different physical parameters and the suitability of the method. The results for hydrodynamic, Newtonian fluid, and single-phase problems can be respectively obtained by taking the Hartmann number ( M = 0), relaxation time ( λ 1 = 0 ), and volume fraction ( C = 0) as special cases of this problem.

Suggested Citation

  • Ahmed Zeeshan & Nouman Ijaz & Tehseen Abbas & Rahmat Ellahi, 2018. "The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2671-:d:160825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzadi, Iqra & Ahsan, Naveed & Nadeem, S. & Issakhov, Alibek, 2020. "Analysis of bifurcation dynamics of streamlines topologies for pseudoplastic shear thinning fluid: Biomechanics application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Rashid, M. & Ansar, K. & Nadeem, S., 2020. "Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Li, Zhixiong & Hedayat, Mohammadali & Sheikholeslami, M. & Shafee, Ahmad & Zrelli, Houyem & Tlili, I. & Nguyen, Truong Khang, 2019. "Numerical simulation for entropy generation and hydrothermal performance of nanomaterial inside a porous cavity using Fe3O4 nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 272-288.
    4. Mehmood, Obaid Ullah & Qureshi, Ayesha Aleem & Yasmin, Humaira & Uddin, Salah, 2020. "Thermo-mechanical analysis of non Newtonian peristaltic mechanism: Modified heat flux model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Kin Lung Jerry Kan & Ka Wai Eric Cheng & Hai-Chen Zhuang, 2023. "Electric Analysis of the Maritime Application High-Frequency Magnetohydrodynamic Thruster," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahd Almutairi & S.M. Khaled & Abdelhalim Ebaid, 2019. "MHD Flow of Nanofluid with Homogeneous-Heterogeneous Reactions in a Porous Medium under the Influence of Second-Order Velocity Slip," Mathematics, MDPI, vol. 7(3), pages 1-11, February.
    2. Saif, Rai Sajjad & Muhammad, Taseer & Sadia, Haleema & Ellahi, Rahmat, 2020. "Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Hayat, Tasawar & Masood, Faria & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Ullah, Malik Zaka & Alshomrani, Ali Saleh & Alghamdi, Metib, 2020. "Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    7. Ahmed, Jawad & Khan, Masood & Ahmad, Latif, 2020. "Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    9. Khan, Sami Ullah & Shehzad, Sabir Ali, 2020. "Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Hayat, T. & Yaqoob, Rabiya & Qayyum, Sumaira & Alsaedi, A., 2020. "Entropy generation optimization in nanofluid flow by variable thicked sheet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    11. Muhammad, Taseer & Rafique, Kiran & Asma, Mir & Alghamdi, Metib, 2020. "Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    12. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
    13. Hayat, Tasawar & Kanwal, Mehreen & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    14. Pardeep Kumar & Hemant Poonia & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2023. "Significance of Weissenberg Number, Soret Effect and Multiple Slips on the Dynamic of Biconvective Magnetohydrodynamic Carreau Nanofuid Flow," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    15. Ali, Mehboob & Khan, Waqar Azeem & Sultan, Faisal & Shahzad, Muhammad, 2020. "Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    16. Khan, M. Ijaz & Khan, M. Waleed Ahmad & Alsaedi, A. & Hayat, T. & Khan, M. Imran, 2020. "Entropy generation optimization in flow of non-Newtonian nanomaterial with binary chemical reaction and Arrhenius activation energy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    17. Eid, Mohamed R. & Mahny, K.L. & Dar, Amanullah & Muhammad, Taseer, 2020. "Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Ahmad, Manzoor & Muhammad, Taseer & Ahmad, Iftikhar & Aly, Shaban, 2020. "Time-dependent 3D flow of viscoelastic nanofluid over an unsteady stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    20. Hazarika, Silpi & Ahmed, Sahin & Chamkha, Ali J., 2021. "Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: A numerical modeling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 819-837.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2671-:d:160825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.