IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p951-d137869.html
   My bibliography  Save this article

Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)

Author

Listed:
  • Michal Apollo

    (Department of Tourism and Regional Studies, Institute of Geography, Pedagogical University of Cracow, Podchorazych Street 2, 30-084 Cracow, Poland)

  • Viacheslav Andreychouk

    (Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmiescie 30, 00-927 Warsaw, Poland)

  • Suman S. Bhattarai

    (Department of Biology, Tri-Chandra M. Campus, Tribhuvan University, Ghantaghar 2323, 44600 Kathmandu, Nepal)

Abstract

Animals’ activities are a significant geomorphologic factor. An important reliefogenic role is played by animals introduced by man; that is, livestock. The activity of livestock on the earth’s surface can be direct (horizontal displacement of the soil), or indirect (preparation of ground for degradation). In this research the areas that livestock tread most often were put under examination, that is, places used for resting (e.g., during the night) and paths used for moving (e.g., while passing to and from grazing spots). The experimental research areas were divided into two groups. During the two-week study period it was noted that (1) the number of plants and their stems had declined by 9.5% and 19% respectively, and the paths had widened by 6%; (2) the soil level had decreased, uncovering the measurement pins by 3.5 mm up to 24 mm, depending on the slope of the ground, while in the comparison (control) areas the pins were uncovered only up to an average 1.8 mm. The results of the research show the scale of the phenomenon of zoogenic erosion caused by livestock. Based on the research the following formula has been elaborated y = ( − 0.005 x + 0.0526 ) T × N × S P 100 × 0.86 . This provided the opportunity to calculate the average (hypothetical) data for soil loss (y), according to the slope degree (x), the number of animals (N), the time that those animals spend in the area (T), and the static pressure they caused on the ground (SP). The paper makes recommendations that could lead to a reduction in soil erosion caused by livestock.

Suggested Citation

  • Michal Apollo & Viacheslav Andreychouk & Suman S. Bhattarai, 2018. "Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:951-:d:137869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. L. Baumhardt & B. A. Stewart & U. M. Sainju, 2015. "North American Soil Degradation: Processes, Practices, and Mitigating Strategies," Sustainability, MDPI, vol. 7(3), pages 1-25, March.
    2. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    3. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    4. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Apollo & Viacheslav Andreychouk, 2020. "Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley," Resources, MDPI, vol. 9(8), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahraa Tarek & Ahmed M. Elshewey & Samaa M. Shohieb & Abdelghafar M. Elhady & Noha E. El-Attar & Sherif Elseuofi & Mahmoud Y. Shams, 2023. "Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    2. H. Vijith & L. W. Seling & D. Dodge-Wan, 2018. "Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1365-1384, June.
    3. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    4. Jean de Dieu Nambajimana & Xiubin He & Ji Zhou & Meta Francis Justine & Jinlin Li & Dil Khurram & Richard Mind’je & Gratien Nsabimana, 2019. "Land Use Change Impacts on Water Erosion in Rwanda," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    5. Yamuna Giambastiani & Riccardo Giusti & Lorenzo Gardin & Stefano Cecchi & Maurizio Iannuccilli & Stefano Romanelli & Lorenzo Bottai & Alberto Ortolani & Bernardo Gozzini, 2022. "Assessing Soil Erosion by Monitoring Hilly Lakes Silting," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    6. Clement Nyamekye & Michael Thiel & Sarah Schönbrodt-Stitt & Benewinde J.-B. Zoungrana & Leonard K. Amekudzi, 2018. "Soil and Water Conservation in Burkina Faso, West Africa," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    7. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    8. Folasade Mary OWOADE, 2021. "Effects of Land Use Types on Soil Productivity Parameters: A Case Study of Ogbomoso Agricultural Zone, Southern Guinea Savanna Ecology of Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 5(4), pages 29-40, December.
    9. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    10. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    11. Md. Yamin Kabir & Nasrin Sultana & Md. Abdul Mannan, 2022. "Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 96-101, October.
    12. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    13. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    14. Natanael Bolson & Tadeusz Patzek, 2022. "Evaluation of Rwanda’s Energy Resources," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    15. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    16. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    17. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    18. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    19. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    20. Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:951-:d:137869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.