IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p768-d135753.html
   My bibliography  Save this article

Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator

Author

Listed:
  • Jong Seok Lee

    (Department of Civil Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea)

  • Hyun Il Choi

    (Department of Civil Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea)

Abstract

As extreme weather conditions due to climate change can cause deadly flood damages all around the world, a role of the flood vulnerability assessment has become recognized as one of the preemptive measures in nonstructural flood mitigation strategies. Although the flood vulnerability is most commonly assessed by a composite indicator compiled from multidimensional phenomena and multiple conflicting criteria associated with floods, directly or indirectly, it has been often overlooked that the construction frameworks and processes can have a significant influence on the flood vulnerability indicator outcomes. This study has, therefore, compared the flood vulnerability ranking orders for the 54 administrative districts in the Nakdong River Watershed of the Korean Peninsula, ranked from composite indicators by different frameworks and multi-attribute utility functions for combining the three assessment components, such as exposure, sensitivity, and coping, presented in the IPCC Third Assessment Report. The results show that the different aggregation components and utility functions under the same proxy variable system can lead to larger volatility of flood vulnerability rankings than expected. It is concluded that the vulnerability indicator needs to be derived from all three assessment components by a multiplicative utility function for a desirable flood vulnerability assessment to climate change.

Suggested Citation

  • Jong Seok Lee & Hyun Il Choi, 2018. "Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:768-:d:135753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff O'Brien & Phil O'Keefe & Hubert Meena & Joanne Rose & Leanne Wilson, 2008. "Climate adaptation from a poverty perspective," Climate Policy, Taylor & Francis Journals, vol. 8(2), pages 194-201, March.
    2. Giuseppe Munda & Michela Nardo, 2009. "Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1513-1523.
    3. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    4. Arief Anshory Yusuf & Herminia Francisco, 2009. "Climate Change Vulnerability Mapping for Southeast Asia," EEPSEA Special and Technical Paper tp200901s1, Economy and Environment Program for Southeast Asia (EEPSEA), revised Jan 2009.
    5. Lisa Rygel & David O’sullivan & Brent Yarnal, 2006. "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 741-764, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changfeng Jing & Mingyi Du & Songnian Li & Siyuan Liu, 2019. "Geospatial Dashboards for Monitoring Smart City Performance," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    2. Niranjan Padhan & S Madheswaran, 2023. "An integrated assessment of vulnerability to floods in coastal Odisha: a district-level analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2351-2382, February.
    3. Muhammad Nazeer & Hans-Rudolf Bork, 2019. "Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    4. Edson Kogachi & Adonias Ferreira & Carlos Cavalcante & Marcelo Embiruçu, 2021. "Development of Performance Evaluation Indicators for Table Grape Packaging Units. 2. Global Indexes," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    5. Muhammad Nazeer & Hans-Rudolf Bork, 2021. "A local scale flood vulnerability assessment in the flood-prone area of Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 755-781, January.
    6. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oz Sahin & Sherif Mohamed, 2014. "Coastal vulnerability to sea-level rise: a spatial–temporal assessment framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 395-414, January.
    2. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    3. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    4. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    5. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    6. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    7. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    8. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    9. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    10. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    11. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    12. Vijaya Krishnan, 2015. "Development of a Multidimensional Living Conditions Index (LCI)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(2), pages 455-481, January.
    13. Yao An & Ning Liu & Lin Zhang & Huanhuan Zheng, 2022. "Adapting to climate risks through cross-border investments: industrial vulnerability and smart city resilience," Climatic Change, Springer, vol. 174(1), pages 1-29, September.
    14. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    15. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    16. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    17. Slavo Radosevic & Esin Yoruk, 2016. "A New Metrics Of Technology Upgrading: The Central And East European Countries In A Comparative Perspective," UCL SSEES Economics and Business working paper series 2016-2, UCL School of Slavonic and East European Studies (SSEES).
    18. Akhmetkal Medeu & Adilet Valeyev & Farida Akiyanova & Yuisya Lyy & Gulnura Issanova & Yongxiao Ge, 2023. "Assessment of the Vulnerability of the Coast of Lake Alakol to Modern Geomorphological Processes of Relief Formation," Land, MDPI, vol. 12(7), pages 1-21, July.
    19. Forsyth, Tim & Evans, Natalie, 2013. "What is autonomous adaption? Resource scarcity and smallholder agency in Thailand," LSE Research Online Documents on Economics 45412, London School of Economics and Political Science, LSE Library.
    20. Glwadys A. Gbetibouo & Claudia Ringler & Rashid Hassan, 2010. "Vulnerability of the South African farming sector to climate change and variability: An indicator approach," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 175-187, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:768-:d:135753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.