IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i3p77-d1733688.html
   My bibliography  Save this article

A Markov Chain Monte Carlo Procedure for Efficient Bayesian Inference on the Phase-Type Aging Model

Author

Listed:
  • Cong Nie

    (Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada)

  • Xiaoming Liu

    (Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada)

  • Serge Provost

    (Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada)

  • Jiandong Ren

    (Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada)

Abstract

The phase-type aging model (PTAM) belongs to a class of Coxian-type Markovian models that can provide a quantitative description of well-known aging characteristics that are part of a genetically determined, progressive, and irreversible process. Due to its unique parameter structure, estimation via the MLE method presents a considerable estimability issue, whereby profile likelihood functions are flat and analytically intractable. In this study, a Markov chain Monte Carlo (MCMC)-based Bayesian methodology is proposed and applied to the PTAM, with a view to improving parameter estimability. The proposed method provides two methodological extensions based on an existing MCMC inference method. First, we propose a two-level MCMC sampling scheme that makes the method applicable to situations where the posterior distributions do not assume simple forms after data augmentation. Secondly, an existing data augmentation technique for Bayesian inference on continuous phase-type distributions is further developed in order to incorporate left-truncated data. While numerical results indicate that the proposed methodology improves parameter estimability via sound prior distributions, this approach may also be utilized as a stand-alone statistical model-fitting technique.

Suggested Citation

  • Cong Nie & Xiaoming Liu & Serge Provost & Jiandong Ren, 2025. "A Markov Chain Monte Carlo Procedure for Efficient Bayesian Inference on the Phase-Type Aging Model," Stats, MDPI, vol. 8(3), pages 1-22, August.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:77-:d:1733688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/3/77/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/3/77/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. Lin & Xiaoming Liu, 2007. "Markov Aging Process and Phase-Type Law of Mortality," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 92-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.
    2. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    3. Boquan Cheng & Rogemar Mamon, 2023. "A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 142-187, January.
    4. Zhao, Yixing & Mamon, Rogemar, 2018. "An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 1-12.
    5. Su, Shu & Sherris, Michael, 2012. "Heterogeneity of Australian population mortality and implications for a viable life annuity market," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 322-332.
    6. Boquan Cheng & Rogemar Mamon, 2024. "Examining the identifiability and estimability of the phase-type ageing model," Computational Statistics, Springer, vol. 39(2), pages 963-1004, April.
    7. Khouzeima Moutanabbir & Hassan Abdelrahman, 2022. "Bivariate Sarmanov Phase-Type Distributions for Joint Lifetimes Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1093-1118, June.
    8. Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
    9. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    10. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    11. Franck Adékambi, 2019. "Moments Of Phase-Type Aging Modeling For Health Dependent Costs," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 37-64, June.
    12. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    13. Guglielmo D'Amico & Montserrat Guillen & Raimondo Manca & Filippo Petroni, 2017. "Multi-state models for evaluating conversion options in life insurance," Papers 1707.01028, arXiv.org.
    14. Søren Asmussen & Patrick J. Laub & Hailiang Yang, 2019. "Phase-Type Models in Life Insurance: Fitting and Valuation of Equity-Linked Benefits," Risks, MDPI, vol. 7(1), pages 1-22, February.
    15. Meyricke, Ramona & Sherris, Michael, 2013. "The determinants of mortality heterogeneity and implications for pricing annuities," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 379-387.
    16. Milevsky, Moshe A., 2020. "Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 147-161.
    17. Hautphenne, Sophie & Massaro, Melanie & Turner, Katharine, 2019. "Fitting Markovian binary trees using global and individual demographic data," Theoretical Population Biology, Elsevier, vol. 128(C), pages 39-50.
    18. Shu Su & Michael Sherris, 2011. "Heterogeneity of Australian Population Mortality and Implications for a Viable Life Annuity Market," Working Papers 201103, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:77-:d:1733688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.