A Markov Chain Monte Carlo Procedure for Efficient Bayesian Inference on the Phase-Type Aging Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- X. Lin & Xiaoming Liu, 2007. "Markov Aging Process and Phase-Type Law of Mortality," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 92-109.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.
- Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
- Boquan Cheng & Rogemar Mamon, 2023. "A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 142-187, January.
- Zhao, Yixing & Mamon, Rogemar, 2018. "An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 1-12.
- Su, Shu & Sherris, Michael, 2012. "Heterogeneity of Australian population mortality and implications for a viable life annuity market," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 322-332.
- Boquan Cheng & Rogemar Mamon, 2024. "Examining the identifiability and estimability of the phase-type ageing model," Computational Statistics, Springer, vol. 39(2), pages 963-1004, April.
- Khouzeima Moutanabbir & Hassan Abdelrahman, 2022. "Bivariate Sarmanov Phase-Type Distributions for Joint Lifetimes Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1093-1118, June.
- Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
- Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
- Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
- Franck Adékambi, 2019. "Moments Of Phase-Type Aging Modeling For Health Dependent Costs," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 37-64, June.
- Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
- Guglielmo D'Amico & Montserrat Guillen & Raimondo Manca & Filippo Petroni, 2017. "Multi-state models for evaluating conversion options in life insurance," Papers 1707.01028, arXiv.org.
- Søren Asmussen & Patrick J. Laub & Hailiang Yang, 2019. "Phase-Type Models in Life Insurance: Fitting and Valuation of Equity-Linked Benefits," Risks, MDPI, vol. 7(1), pages 1-22, February.
- Meyricke, Ramona & Sherris, Michael, 2013. "The determinants of mortality heterogeneity and implications for pricing annuities," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 379-387.
- Milevsky, Moshe A., 2020. "Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 147-161.
- Hautphenne, Sophie & Massaro, Melanie & Turner, Katharine, 2019. "Fitting Markovian binary trees using global and individual demographic data," Theoretical Population Biology, Elsevier, vol. 128(C), pages 39-50.
- Shu Su & Michael Sherris, 2011. "Heterogeneity of Australian Population Mortality and Implications for a Viable Life Annuity Market," Working Papers 201103, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:77-:d:1733688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i3p77-d1733688.html