IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i3p66-d1707439.html

Proximal Causal Inference for Censored Data with an Application to Right Heart Catheterization Data

Author

Listed:
  • Yue Hu

    (School of Management, Zhejiang University, Hangzhou 310058, China
    Center for Data Science, Zhejiang University, Hangzhou 310058, China)

  • Yuanshan Gao

    (Center for Data Science, Zhejiang University, Hangzhou 310058, China)

  • Minhao Qi

    (School of Management, Zhejiang University, Hangzhou 310058, China
    Center for Data Science, Zhejiang University, Hangzhou 310058, China)

Abstract

In observational causal inference studies, unmeasured confounding remains a critical threat to the validity of effect estimates. While proximal causal inference (PCI) has emerged as a powerful framework for mitigating such bias through proxy variables, existing PCI methods cannot directly handle censored data. This article develops a unified proximal causal inference framework that simultaneously addresses unmeasured confounding and right-censoring challenges, extending the proximal causal inference literature. Our key contributions are twofold: (i) We propose novel identification strategies and develop two distinct estimators for the censored-outcome bridge function and treatment confounding bridge function, resolving the fundamental challenge of unobserved outcomes; (ii) To improve robustness against model misspecification, we construct a robust proximal estimator and establish uniform consistency for all proposed estimators under mild regularity conditions. Through comprehensive simulations, we demonstrate the finite-sample performance of our methods, followed by an empirical application evaluating right heart catheterization effectiveness in critically ill ICU patients.

Suggested Citation

  • Yue Hu & Yuanshan Gao & Minhao Qi, 2025. "Proximal Causal Inference for Censored Data with an Application to Right Heart Catheterization Data," Stats, MDPI, vol. 8(3), pages 1-22, July.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:66-:d:1707439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/3/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/3/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel O. Scharfstein, 2002. "Estimation of the failure time distribution in the presence of informative censoring," Biometrika, Biometrika Trust, vol. 89(3), pages 617-634, August.
    2. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    3. Zhengling Qi & Rui Miao & Xiaoke Zhang, 2024. "Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 915-928, April.
    4. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    5. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    6. Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
    7. Yifan Cui & Hongming Pu & Xu Shi & Wang Miao & Eric Tchetgen Tchetgen, 2024. "Semiparametric Proximal Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1348-1359, April.
    8. Wang Miao & Zhi Geng & Eric J Tchetgen Tchetgen, 2018. "Identifying causal effects with proxy variables of an unmeasured confounder," Biometrika, Biometrika Trust, vol. 105(4), pages 987-993.
    9. Zhang, Jeffrey & Li, Wei & Miao, Wang & Tchetgen Tchetgen, Eric, 2023. "Proximal causal inference without uniqueness assumptions," Statistics & Probability Letters, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
    2. Luo, Shanshan & Zhang, Yechi & Li, Wei & Geng, Zhi, 2025. "Multiply robust estimation of causal effects using linked data," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
    3. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    4. Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
    5. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    6. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    7. Burkhard Raunig, 2019. "Background Indicators," Econometrics, MDPI, vol. 7(2), pages 1-14, May.
    8. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    9. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression," Papers 2112.14249, arXiv.org, revised May 2025.
    10. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    11. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    12. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    13. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    14. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    15. Hairu Wang & Yukun Liu & Haiying Zhou, 2025. "Score test for unconfoundedness under a logistic treatment assignment model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 517-533, August.
    16. Rahul Singh & Moses Stewart, 2025. "Placebo Discontinuity Design," Papers 2507.12693, arXiv.org.
    17. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    18. Manabu Kuroki & Hisayoshi Nanmo, 2020. "Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 667-685, December.
    19. Richard J. Cook & Jerald F. Lawless, 2020. "Failure time studies with intermittent observation and losses to follow‐up," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1035-1063, December.
    20. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:66-:d:1707439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.