IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i1p24-d1614204.html
   My bibliography  Save this article

Optimal ANOVA-Based Emulators of Models With(out) Derivatives

Author

Listed:
  • Matieyendou Lamboni

    (Department DFR-ST, University of Guyane, Cayenne 97346, French Guiana
    228-UMR Espace-Dev, University of Guyane, University of Réunion, IRD, University of Montpellier, 34090 Montpellier, France)

Abstract

This paper proposes new ANOVA-based approximations of functions and emulators of high-dimensional models using either available derivatives or local stochastic evaluations of such models. Our approach makes use of sensitivity indices to design adequate structures of emulators. For high-dimensional models with available derivatives, our derivative-based emulators reach dimension-free mean squared errors (MSEs) and a parametric rate of convergence (i.e., O ( N − 1 ) ). This approach is extended to cope with every model (without available derivatives) by deriving global emulators that account for the local properties of models or simulators. Such generic emulators enjoy dimension-free biases, parametric rates of convergence, and MSEs that depend on the dimensionality. Dimension-free MSEs are obtained for high-dimensional models with particular distributions from the input. Our emulators are also competitive in dealing with different distributions of the input variables and selecting inputs and interactions. Simulations show the efficiency of our approach.

Suggested Citation

  • Matieyendou Lamboni, 2025. "Optimal ANOVA-Based Emulators of Models With(out) Derivatives," Stats, MDPI, vol. 8(1), pages 1-27, March.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:1:p:24-:d:1614204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/1/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/1/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    2. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    3. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    4. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    5. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    6. Maryam Salem Alatawi & Barbara Martinucci, 2022. "On the Elementary Symmetric Polynomials and the Zeros of Legendre Polynomials," Journal of Mathematics, Hindawi, vol. 2022, pages 1-9, May.
    7. Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
    8. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    10. Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.
    2. Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
    3. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    4. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    5. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    6. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    7. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    8. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    9. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    11. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    12. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
    13. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    14. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    15. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    16. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
    20. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:1:p:24-:d:1614204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.